بررسی ارتباط ترکیب شیمیایی و اسیدهای چرب جیره و فیله ماهی قزلآلا رنگین کمان

در دوره رشد

مهمان صالحی، منصوره قاتی، مریم جوادی بابلی

گروه کشاورزی و منابع طبیعی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

مسند مکاتبات: mansoreghaeni@gmail.com

تاریخ دریافت: 1395/10/14

چکیده

ماهی در این تحقیق اثر کاهش پروتئین و افزایش چربی جیره بر ترکیب شیمیایی و اسیدهای چرب فیله ماهی قزلآلا رنگین (Oncorhynchus mykiss) کمان (امین اکبر نیک‌دوست) در سه وزن فیله (25-30، 30-35، 40-45 گرم) مورد بررسی قرار گرفته است. بر اساس نتایج این تحقیق، طول کل، طول استاندارد و وزن بین سه مورد بررسی اختلاف معنی‌داری (پ‌ه‌ک‌پ) داشته است. بالاترین مقدار پروتئین در تیمار 25-200 گرمی از مقدار 3، 18 درصد و بالاترین مقدار 250 گرمی از مقدار 0، 75 درصد تیمار 25-200 داشته است. بالاترین مقدار کاهش در تیمار 25-200 گرمی از مقدار 0، 60 درصد تیمار 250-300 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمی از مقدار 0، 35 درصد تیمار 25-200 گرمی و کمترین مقدار در فیله ماهی 150 گرمتیمار آزمایی، میزان واکنش‌های بر بازی علی‌بی‌الله بیزی معنی‌داری بسیار نداشت و در همه رشته‌ها داشته است. از جهان با سرعت متوسط سالانه 80 درصد است. از سال 1980، صنعت آب‌پوری، با افزایش سالانه 10 درصد در پوشش کشاورزی سریع ترین رشد را در جهان داشته است. با توجه به رشد این صنعت و تماس پرورش‌ده در کنار بازی علی‌بی‌الله بیزی می‌توان گفت که توجه به تغییرات طبیعی و اقتصادی باعث افزایش نرخ قیمت ماهی قزلآلا رنگین کمان می‌شود که حدود 27 درصد آن مربوط به منابع پروتئینی جیره غذا است. از طرفی لبیده‌ها یکی

کلیات کلیدی: اسیدهای چرب، پروتئین، ترکیب شیمیایی، قزلآلا رنگین کمان

مقدمه

منتخب آب‌پوری سریع ترین بخش تولید غذا در جهان با سرعت متوسط سالانه 80 درصد است. از سال 1980، صنعت آب‌پوری، با افزایش سالانه 10 درصد در پوشش کشاورزی سریع ترین رشد را در جهان داشته است. با توجه به رشد این صنعت و تماس پرورش‌ده در کنار بازی علی‌بی‌الله بیزی می‌توان گفت که توجه به تغییرات طبیعی و اقتصادی باعث افزایش نرخ قیمت ماهی قزلآلا رنگین کمان می‌شود که حدود 27 درصد آن مربوط به منابع پروتئینی جیره غذا است. از طرفی لبیده‌ها یکی

37
روغن‌های با منابع گیاهی در جیره غذايی ماهی قزلآی رنگ‌کمان (Oncorhynchus mykiss) تاثیر مناسب‌کننده بر روی رشد و تکثیر این نوع جیره ضروری در رژیم غذایی آبزیان می‌باشد. اهمیت اسیدهای چرب به شدت غیربایوجی مانند دوکراکوئونیک اسید و ایکوزا پنتانوئونیک اسید در تغذیه ماهی، بسیار زیاد است. این اسیدهای چرب به منظور رشد بهینه ماهی و تکامل گونه‌های جنسی ضروری می‌باشد (14).

بیشتر ماهیان کوگشت‌خوار در شرایط تغذیه طبیعی، ترجیحاً از پروتئین نسبت به چربی یا کربوهیدرات به عنوان منبع انرژی استفاده می‌کنند با پدیداری محضیت‌های ایفا شنی ماهی چربه، استفاده از جیره به‌روزسیر می‌باشد (24). گزارش‌های سه‌تیمی هدف‌مند برچیدن چربه به‌روزسیر اثر هم‌سازی با پروتئین و در این رو به نظر می‌رسد که به‌روزسیر کبودی نوع پروتئین و در نتیجه حمیت تولید گذا را کاهش دهد.

قزلآی رنگ‌کمان (Oncorhynchus mykiss) به تولید سالانه ۲۷۲۶ هزار تن در آبزیان ماهی‌های سردایی و شهنشین ماهی پرورشی در جهان محصول می‌شود (15).

به دلیل اینکه این نوع ماهی با لاف‌افلام پس از زنبور کیسه زده به‌طور اغلب از جیره مصنوعی می‌پردازد و وجود پروتئین جهت تأمین انرژی این ماهی جهت رشد سریع بخش زیادی از این جیره را تامین می‌کند (16)، تغییر در نوع پروتئین مورد استفاده و یا جایگزینی آن با مواد دیگر در پوره این گونه اهمیت زیادی دارد. از این رو تحقیقات زیادی در زمینه جایگزینی چربه این ماهی و غنی‌سازی ان صورت گرفته است که این جمله می‌تواند به صورت کاملاً احتمالی رشد و همکارانه (13) یا حرکت تاثیرات جانشینی بودر ماهی با کسانه‌های پروتئینی سیستم بریج در یک بیماری، علائم دی‌ای و تکثیر اسیدهای آمی نی دن آلبالین ماهی قزلآی رنگ‌کمان (17) جلیلی و همکارانه (13)، آثار جایگزینی پوره و...
سطح پروتئین کاهش و سطح چربی افزایش یافت.
جهت‌های برای آنالیز به آزمایشگاه فرستاده شدند
(جدول 1).

اماده کردن نمونه‌ها: در آزمایشگاه پس از یک گشتایی
ماهیان و با کمک اصلاحک امکان و احیاء تخم‌های
گردید. ستون مهره ماهی به دقت جدا شده و عضلات
فاقد استخوان از یک حیوان ماهی جدا شد. عضلات
با کمک آسیاب به شکل خمیر همگن در آماده و
نمونه‌ها بسته به هر گروه در کیسه‌های بستم
جدگانه قرار داده شدند و روی پلاستیک‌ها ورن
نمونه‌ها نوشته شد. نمونه‌ها تا زمان انجام شدن
آزمایش‌ها در داخل یک حیوان ونولولیک و لایه‌ی خیالی
پوستی نگهداری شدند (۱۳).

تعیین ترکیب شیمیایی پروتئین خام با استفاده از
روش کلدل (۷ و چربی خام با استفاده از روش (۸)
خاکستر و با سوزاندن نمونه‌ها در کوره با دمای
۵۵۰ درجه سانتی‌گراد به مدت ۲۴ ساعت از این نمونه‌ها
در جهت تحقیق رطوبتی به روش خشک‌کردن نمونه‌ها
آن‌ها با دمای ۱۰۵ درجه سانتی‌گراد و تا رسیدن به
وزن ثابت اندازه‌گیری گردید (۹).

تعیین ترکیب اسیدهای چرب: برای استخراج
روغن از ۴۰ گرم نمونه، استخراج اسیدهای چرب با استفاده از
روش یا AOCS انتدازه‌گیری شدند.
سپس میلی استر

جدول 1- نتایج آنالیز خوراک‌های مورد بررسی توسط شرکت پیش‌بینه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>اسیدهای چرب</th>
<th>پروتئین</th>
<th>ویتامن</th>
<th>خاکستر</th>
<th>رطوبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>امکا ۱</td>
<td>۱۲/۱۱۰۰</td>
<td>۱۳/۱۰۰۰</td>
<td>۴/۱۰۰۰</td>
<td>۲/۱۰۵۰</td>
<td>۹/۱۰۵۰</td>
</tr>
<tr>
<td>امکا ۲</td>
<td>۱۵/۱۰۵۰</td>
<td>۱۶/۱۰۰۰</td>
<td>۴/۱۰۰۰</td>
<td>۲/۱۰۵۰</td>
<td>۸/۱۰۵۰</td>
</tr>
<tr>
<td>امکا ۳</td>
<td>۱۵/۱۰۵۰</td>
<td>۱۶/۱۰۰۰</td>
<td>۴/۱۰۰۰</td>
<td>۳/۱۰۵۰</td>
<td>۸/۱۰۵۰</td>
</tr>
<tr>
<td>امکا ۴</td>
<td>۱۵/۱۰۵۰</td>
<td>۱۶/۱۰۰۰</td>
<td>۴/۱۰۰۰</td>
<td>۳/۱۰۵۰</td>
<td>۸/۱۰۵۰</td>
</tr>
</tbody>
</table>

(جهت تغذیه ماهیان ۵۰-۲۵ گرم در این طرح)
در نمودار 3 مقدارهای پروتئین و چربی در تیمار 250 گرمی اندام‌گیری شد. همچنین مقدار خاکستر بافت فیلیه بین تیمارهای مختلف با یکدیگر در جدول 2 مقیاسه شده است. بر اساس این جدول، مقدار خاکستر بین تیمار مورد بررسی اختلاف معنی‌دار داشت (p<0.05). در اثر این مقدار‌ها، تیمارهای خاکستری در تیمار 250 گرمی از این جدول 250 گرمی از مقدار 1 درصد و کمترین مقدار خاکستر با میزان 53/0 درصد در تیمار 70 گرمی اندازه‌گیری شد. رطوبت و ماده خشک بافت فیلیه بین تیمارهای مختلف با یکدیگر نشان می‌دهد که مقدار خاکستر با میزان 75/0 درصد در تیمار 250 گرمی و ماده خشک بین سه تیمار مورد بررسی اختلاف معنی‌دار داشت (p<0.05).

نتایج آنالیز اسیدهای چرب فیلیه سه تیمار مورد بررسی در طول دوره 6 ماهه در 3 مورد بررسی قرار گرفته است (جدول 4). در نمودار 1 مقدارهای پروتئین و چربی اشعاب در تیمارهای مختلف مقیاسه شده است. بر اساس میرستیک اسید، پالماتیک اسید، استناریک اسید و آراشیدنیک اسید بین سه تیمار مورد بررسی اختلاف معنی‌دار داشت (p<0.05). در اثر این مقدارهای پروتئین و چربی
جدول 2- میانگین و انحراف معیار مشخصات زیست سنجی سه تیمار مورد بررسی

<table>
<thead>
<tr>
<th>مشخصه زیست سنجی</th>
<th>فیلرهای ماهی (0-200 گرم)</th>
<th>فیلرهای ماهی (200-450 گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول کل (سانتی‌متر)</td>
<td>18/20 ± 0/38 b</td>
<td>18/28 ± 0/38 a</td>
</tr>
<tr>
<td>طول استاندارد (سانتی‌متر)</td>
<td>29/23 ± 0/05 a</td>
<td>29/23 ± 0/05 b</td>
</tr>
<tr>
<td>وزن (گرم)</td>
<td>1/45 ± 0/00 c</td>
<td>1/46 ± 0/00 b</td>
</tr>
</tbody>
</table>

جدول 3- نتایج تحلیل ترکیب شیمیایی سه تیمار مورد بررسی در طول دوره 2 ماهه

<table>
<thead>
<tr>
<th>فیلرهای ماهی (0-200 گرم)</th>
<th>فیلرهای ماهی (200-450 گرم)</th>
<th>نامونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0</td>
<td>C16:0</td>
<td>C18:0</td>
</tr>
<tr>
<td>C16:2</td>
<td>C18:3</td>
<td>C20:0</td>
</tr>
<tr>
<td>C18:3</td>
<td>C20:5</td>
<td>C22:6</td>
</tr>
</tbody>
</table>

جدول 4- نتایج آنالیز اسیدهای چرب فیلرهای ماهی مورد بررسی در طول دوره 6 ماهه

<table>
<thead>
<tr>
<th>نوع اسید چرب</th>
<th>تعداد کربن و بندهای گاز</th>
<th>فیلرهای ماهی (0-250 گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ SAF</td>
<td>Σ MUFA</td>
<td>Σ PUFA</td>
</tr>
<tr>
<td>Σ N</td>
<td>Σ C20:4</td>
<td>Σ C20:5</td>
</tr>
<tr>
<td></td>
<td>SAF</td>
<td>MUFA</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>مجموع اسیدهای چرب سری امکانه امکاک 3</td>
<td>$\Sigma N/\Sigma N-3$</td>
<td>$\Sigma N-3/\Sigma N-6$</td>
</tr>
<tr>
<td>مجموع اسیدهای چرب سری امکاک 3 به امکاک</td>
<td>$\Sigma N/\Sigma N-3$</td>
<td>$\Sigma N-3/\Sigma N-6$</td>
</tr>
<tr>
<td>دوکورالژترنولیک/ایکوزاتراونولیک</td>
<td>DHA/EPA</td>
<td></td>
</tr>
<tr>
<td>اسید چرب چندگیر اشباع/اسید چرب تن غیراشبع</td>
<td>PUFA/MUFA</td>
<td></td>
</tr>
<tr>
<td>حروف غیرشباهت به معنی اختلاف معنادار در سطح 0.05 است.</td>
<td>$p<0.05$</td>
<td></td>
</tr>
</tbody>
</table>

نمودار 1 - مقایسه اسیدهای چرب SAF در تیمارها

نمودار 2 - مقایسه اسیدهای چرب MUFA در تیمارها

42
نمودار ۳- مقایسه اسیدهای چرب در تیمارها PUFA

نمودار ۴- مقایسه اسیدهای چرب در تیمارها HUFA

بحث

با توجه به آنالیز خوراک‌های مورد استفاده در این مزرعه (خوراک استارتر، رشد و پروری)، مشاهده شد که همگام با افزایش سن و سایز ماهی، در چرب‌های مورد استفاده از میزان رطوبت این خوراک‌ها کاسته شد که ممکن است در اثر افزایش درجه حرارت قرار داده شده شود. با این حال، به‌طور کلی، افزایش درجه حرارت باعث افزایش چرب‌هایPUFA در ماهی شد و افزایش درجه حرارت باعث افزایش چرب‌های HUFA نیز شد.

با توجه به آنالیز خوراک‌های مورد استفاده در این مزرعه (خوراک استارتر، رشد و پروری)، مشاهده شد که همگام با افزایش سن و سایز ماهی، در چرب‌های مورد استفاده از میزان رطوبت این خوراک‌ها کاسته شده است. با این حال، به‌طور کلی، افزایش درجه حرارت باعث افزایش چرب‌هایPUFA در ماهی شد و افزایش درجه حرارت باعث افزایش چرب‌های HUFA نیز شد.
تحقیق نشان می‌دهد که افزایش سطح چربی جبره با افزایش اندازه ماهی نتایج مثبتی نشان داده است.

در استدلالی چرب اشباع یا SAF: ایمنی چرب میریستیک، پالمیتیک، استرانتیک، اسیدهای از tablaًتین مقدار را لفیت 200-150 گرم نشان داده و با افزایش اندازه ماهی به طور معنی‌داری افزایش یافته است. در بین این گروه از ایمنی‌های چرب، ایمنی پالمیتیک بالاترین مقدار را در سه گروه هر مورد بررسی به خود اختصاص داده و بعد از آن استرانتیک، میریستیک و در نهایت استرانتیک ایمنی دارد. از نظر مقادیر ایمنی‌های چرب در گروه آبیارن، تحقیقات نشان داده که در گروه تحقیقات اکثر آبیاری‌های که با مصرف میان ایمنی‌های چرب پالمیتیک، استرانتیک و سپس استرانتیک نشان داده و به دنبال آن استرانتیک در سه گروه هر مورد، ایمنی دارد از چروکه (4).

در تحقیقات Turan و همکاران (2007) سفره ماهی دریایی سیاه این ایمنی‌های چرب اشباع با 65 و 22 درصد رتبه‌های اول و دوم را در گروه داشته‌اند (29) که با تابیت بسته آماده در این بررسی هم‌اطلاعات دارد. به طور کلی بررسی‌ها نشان می‌دهد که ایمنی‌های چرب اشباع در گونه- فعالیت ایمنی‌های ماهی فوده است (12).

در مورد یک ایمنی‌های چرب MUFA، اختلاف معنی‌داری وجود داشته و روند افزایش مقادیر این ایمنی‌های ماهی مشاهده می‌شود. در این گروه بالاترین مقدار ایمنی‌های MUFA مربوط به لیپولینیک ایمنی داده و به دنبال آن ایمنی دارد و Gutierrez (1993) Silvia ترین ایمنی چرب تک گیری‌های معنی‌داری در ماهی است (15) و میزان آن در ماهی‌های شیرین پیشتر از ماهیان دریایی است. در تحقیق حاضر لیپولینیک ایمنی دارد.
فلل بهلوعلی و همکاران (2010) نسبت 6
را در ماهیان آب شیرین در محدوده 0.5% تا 0.5/6 در ماهیان در برابر در محدوده 0.7/4 تا 0.7/4 گزارش کردند. (10) که به جریان 0.7/000 تا 0.7/500 گرم در فیله دیگر
در محدوده عنوان شده بودند.
نتایج نشان داد که پتروپتین و چربی در فیله ماهی 0.7/25 - 0.7/50 گرمی اختلاف معنی‌داری نداشت (p>0.05) اما با فیله 0.7/25 - 0.7/50 گرمی اختلاف معنی‌داری دار بود و با توجه به واقعیت
پروپتین و چربی دیگر، فقط مقدار معنی‌داری و مثبت در پیشنهاد می‌رود.
Arrayed و همکاران در سال 1999 پیشنهاد کرده که
گوشتخوانان بنیکه که از پتروپتین تغذیه می‌کنند
(7). کمترین مقدار RA در دانه و در مقابل به
طور معمول پلاکتونخوران دارای پیشترین مقدار
PUFA می‌باشد که این فاصله تغذیه مقدار
PUFA بین این افراد در پیشنهاد می‌رود.
نوع تغذیه ماهیان است. با توجه به اینکه بخش
عمده غذای قزل آلا را گوشتخوانان تشکیل می‌دهند,
پلاک این نوع TPUFA همراه با بهبود نسبت
نیوکسکس و فیله در این نوع تغذیه TPUFA به
CHRF و MUFA بالاتر بود. بعد از استفاده CHRF,
SAF به ترتیب در رده- های بعدی قرار داشتند. این تحقیق با نتایج تحقیقات
خانم‌های محصول و همکاران (3) مطابقت دارد.
بررسی نسبت
نیوکسکس در فیله داد که با افزایش
اندازه ماهی این نسبت نیز افزایش یافته است. نسبت
خشان نسبتی برابر مقایسه نسبی از
w3/w6 تغذیه ای چربی ماهیان می‌باشد (31). نسبت 6
یکی از بهترین معیارها برای مقایسه ارزش نسبی مواد
عفونی رونف ماهی در گونه‌های مختلف است. افزایش
نسبت در زریم غذایی انسان با کاهش لیپیدهای
پلاسما به پیشگیری از بیماری‌های قلبی کمک نموده,
همچنین نسبت این کاهش سرطان را کاهش می‌دهد
(19).
مقدار توصیه شده این نسبت توسط منصوب تغذیه
پیشنهاد 14:1 است. در این تحقیق، نسبت
n3/n6 محدوده‌ای بین 0.7/27 تا 0.7/25 داشته است که در
این موارد کمتر از یک است. این نسبت در فیله ماهی
با اندازه 0.7/00 - 0.7/50 گرمی پیشنهاد می‌شود.
در این تحقیق میزان رطوبت در این نسبت تغذیه
دار است.

فصلنامه علمی - پژوهشی زیست‌شناسی جانوری، سال دهم، شماره دوم، زمستان 97. دانشگاه آزاد اسلامی واحد دامغان

45
همانطور که جدول 1 نشان می‌دهد، در سه جیره مورد بررسی افزایش اندام ماهی منگزس چربی آفراشی و میزان پروتئین به عنوان گران‌ترین جریه کاوش می‌یابد. در ترکیبی بنابر هم‌پروتئین و هم چربی در دو بافت 25-15 و 50-70 گرمی اختلاف معنی‌داری را نشان ندادند. اما در گروه با فیله 150-200 گرمی اختلاف معنی‌دار داشتند و در این حال با افزایش اندام ماهی هم پروتئین و هم چربی افزایش پایه است در حالی که میزان پروتئین جیره با افزایش اندام ماهی کاهش یافته است. از طرفی با مراجعه به جدول 2 مشخص می‌شود که این کاهش پروتئین مانع برای رسیدن ماهی به افزایش اندام ماهی شده و با افزایش اندام ماهی شاخص‌های رشدی نظیر طول کل، طول استاندارد و وزن افزایش یافته است.

با توجه به تحقیقات صورت گرفته، اهمیت چربی‌ها بر روی رشد در ماهی ها بدان ترتیب ثابت شده است. پس از مکان‌هایی از منابع چربی گیاهی و حیوانی در جیره غذایی مانعی استفاده می‌شود. از روز دیگر چربی‌ها علاوه بر منبع انرژی، منبع مهمی برای تامین اسیدهای چرب ضروری محسوب می‌شوند. حال آن که اگر جیره غذایی بیانواده اسیدهای چرب ضروری مورد نیاز ماهی را نامين کند، در نتیجه ماهی به خوبی رشد می‌کند (20۱۰۶۲۹۳). چنین امری در تحقیق حاضر نشان‌دهنده است، به گونه ای که با کاهش سطح پروتئین جیره و افزایش میزان چربی، میزان منگزس چربی ماهی رشد خود را در مقایسه با مانعی که کاهش در حفظ کرده است، در این تولیدانی گونه‌های آب شیرین در امتیاز زایی و طول سازی لیپولیک و لیپولیک می‌تواند از نظر LC-PUFA (چرب ضروری LC-PUFA) موفق باشد (۳۲۱۹۹۳۲۱۹۸۳۲۱۹۸). از این و انتظار می‌رود شاخص‌های رشد در نتیجه عملکرد مناسب این فرآیند در ماهی قزل‌لا حفظ

شکل: همکین افزایش سطح اسیدهای چرب در جیره سپس افزایش مقدار ماهی در برابر نشان‌های محیطی حاصل از تغییرات درجه حرارت آب محیط پرورش و کمپیوتری و نغییرات شوری می‌شود که در تحقیقات نهایی پر مقدم و همکاران (۵) این امر به اثبات رسیده است.

نتیجه‌گیری

تابع این تحقیق نشان داد که کاهش پروتئین جیره تأثیر منفی بر رشد ماهی‌های داشته و می‌توان با توجه به هزینه پروتئین‌های آن را در جیره کاهش و چربی را جایگزین کرد. همکین بر اساس یافته‌های فوق می‌توان نتیجه گرفت که ماهی قزل آلا به خصوص فیله‌هایی با اندازه ۱۲۰-۱۳۰ گرمی به دلیل وجود پروتئین با رشد زیستی بسیار حضور قابل توجه اسیدهای چرب در مقایسه با دو فیله دیگر ۱۵-۲۵ و ۵۰-۷۰ گرمی ارس زنده‌سازی بالاتری دارد.

منابع

۱- حمیدی فرد، ن. عابدی‌نژاد، ک. خ. و. معتمداپور. ع.پ. ۱۳۵۲. تأثیرات جهان‌نیز پودر ماهی با کسانویسی پروتئین سیوس بر نریز در رشد، جهش ماهی و ترکیب اسیدهای آمینه بدن آمیز ماهی قزل آلا زنگین کم ماهی (Oncorhynchus mykiss) نشریه شیلات، مجله منابع طبیعی ایران، شماره ۳۷۸-۱۳۴۳-۲۳۸۷.

۲- جلیلی، ر. آق. ن. نوری، ف. و. امینی، ا. و. نکرضساعدان. ۱۳۹۲. اثر جایگزینی پودر و روش ماهی با مانعگاهی در جیره Oncorhynchus mykiss. مجله شیلات، مجله منابع طبیعی ایران، شماره ۳۷۸-۱۳۴۳-۱۱۹۲.

۳- خان‌زامرد محدودی، م. هدایتی فرد، م. تقی‌اللهی، ا. ۱۳۹۲. بررسی ترکیب بیوشیمیایی، پروتئین، اسیدهای چرب و ارزش غذایی لاش ماهی کیور سرگنده LC-PUFA (چرب ضروری LC-PUFA) موتور باشند (۳۲۱۹۹۳۲۱۹۸۳۲۱۹۸). از این و انتظار می‌رود شاخص‌های رشد در نتیجه عملکرد مناسب این فرآیند در ماهی قزل‌لا حفظ

