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Abstract 

This paper aims to develop a new semi-analytical method based on the continuum 

approximation and Lennard-Jones (LJ) potential function to investigate the potential 

energy and van der Waals (vdW) interaction force between sectors of nanotorus and 

carbon nanotori molecule. Following the present method, a semi-analytical 

formulation is achieved in terms of double integrals which can be readily employed 

to obtain the interactions. A semi-analytical expression is also presented to determine 

the oscillation frequency. The sector is assumed to be orbiting inside the carbon 

nanotori and is free to choose its perfect position inside this nanostructure. The 

effects of geometrical parameters such as tube and ring radii of nanotori as well as 

angle of nanosector on the variation of potential energy, vdW interaction force and 

frequency are examined. As a significant finding, it is shown that the oscillation 

frequency, which is in the gigahertz (GHz) range, is independent of the sector angle. 

Results of this study are shown to be consistent with the existing data and can be 

beneficial for the future studies on the GHz oscillators. 
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1. Introduction 

The first sign of carbon nanotubes (CNTs) 
existence was reported by Iijima's paper in 
1991 [1]. These nanostructures due to their 
outstanding thermal, mechanical and electrical 
properties have attracted much attention for 
applications in many nanoscale devices. Owing 
to the difficulties encountered for 
micromechanical oscillators to achieve 
frequencies up to gigahertz (GHz) range, it 
seemed worthwhile to seek alternative 
mechanisms to overcome this obstacle. Among 
these mechanisms, nanoscale oscillators or the 
so-called GHz oscillators are found to be 
appropriate candidates and have received 
much attention in recent years. Ultrafast 
optical filters and ultrasensitive nanoantennae 
are examples of the potential applications of 
such oscillators [2-4]. Numerous studies have 
been conducted so far concerning the 
mechanisms of different GHz oscillators such as 
CNT-CNT bundle [5], CNT- carbon nanoscroll 
[6] and C60- CNT [7]. The concept of nanoscale 
oscillators was first initiated by Cumings and 

Zettl [8] through an experiment performed on 
two nested multi-walled carbon nanotubes 
(MWCNTs). In their study, an extruded inner 
core was released, which was later pulled back 
inside the outer tube due to the restoring van 
der Waals (vdW) interaction force generated 
from the outer tubes. Zheng and Jiang [9] using 
a continuum approximation of the discrete 
atoms, theoretically attained the frequency of 
these oscillators in the GHz range. Zheng et al. 
[10] by incorporating the effects of frictional 
forces into their proposed model proved that 
the influences of these forces on the oscillation 
frequency can be neglected. Legoas et al. [11, 
12] studied the stability of such systems 
through the use of molecular dynamics (MD) 
simulations and confirmed the GHz frequency 
of these oscillators. Moreover, their 
investigations proved that the dynamic 
stability of these oscillators is possible when 
the diameter difference between the inner and 
the outer layers is about 3.4   Å. In spite of 
numerous studies conducted on the 
nanostructures using the MD simulations, this 
technique can pose some difficulties. The MD 
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simulations are very time-consuming, 
especially when the number of involving atoms 
increases. Additionally, these simulations are 
only capable of solving the problem 
numerically, while the expressions derived 
within the continuum approximation can be in 
analytical or semi-analytical forms [13-16]. 
The continuum approximation due to its 
proven reliability and accuracy has been of 
especial interest to research workers. For 
instance, Hodak and Girifalco [17] evaluated 
the vdW interaction energies between CNTs 
and internal fullerenes with spherical and 
ellipsoidal shape and the interaction energy 
between walls of multi-walled nanotubes using 
the continuum approximation. Ansari et al. [18-
23] used this method to analyze the oscillation 
frequency and distribution of vdW interactions 
between different nanostructures.   
The aim of above studies was mainly 
concentrated to identify different 
characteristics of carbon nanostructures. In the 
following, another variety of carbon 
nanostructures, namely carbon nanotorus will 
be introduced. Carbon nanotorus formed from 
bending a CNT into a torus was discovered 
theoretically by Dunlap [24]. For more details 
concerning the other possible ways of forming 
a nanotorus, the reader is referred to [25-32]. 
Due to matchless geometry of carbon 
nanotorus, it captures exceptional physical 
properties including a higher reversible 
tension up to 39% [33] in comparison with that 
of CNTs which is about 5% [34, 35] and 
magnetic response which causes it to be 
appropriate as a system to study the quantum 
effects [36]. Bohua [37] studied the 
deformation, vibration, and buckling 
characteristics of a nanotorus embedded in an 
elastic medium and suggested a continuum 
model which provides a closed-form solution 
for the above-mentioned characteristics. 
Furthermore, Hilder and Hill [38] through the 
use of continuum approximation investigated 
the oscillatory behavior of an atom and a C60 
fullerene orbiting inside a carbon nanotorus. 
Their study indicated that the equilibrium 
position of the atom and fullerene depends on 
the tube radius. Moreover, they exhibited that 
the orbiting body tends to move closer to the 
wall of the tube as the radius of the tube 
increases. The mechanics of a nanotorus 
oscillating along a carbon nanotube [39] and a 
nanosector orbiting concentrically inside a 

nanotorus [40] were also studied in the 
literature. Sabzyan and Kowsar [41] applied 
GHz rotating electric fields of various strengths 
and frequencies on a carbon nanotorus filled 
with water molecules by MD simulation. In 
another study [42], these researchers 
investigated the cyclotron motion of ions in a 
carbon nanotorus induced by GHz rotating 
electric field using MD simulations. A concise 
formalism to characterize nanometer-sized 
tori on the basis of CNTs was introduced by 
Chuang et al. [43]. In their study, stability of 
these structures was determined by combining 
ab initio density functional calculations with a 
continuum elasticity theory approach. Lee and 
Hill [44] investigated the mechanics of a nano 
logic gate, comprising a metallofullerene which 
is located inside a square-shaped single-walled 
carbon nanotorus comprising non-metallic, 
single-walled CNTs with perfect nanotoroidal 
corners. Glukhova et al. [45] proposed an 
experimental technique for increasing the yield 
of CNT nanotori utilizing the modified arc 
synthesis method. Farahani and Gao [46] 
studied the topological indices of nanotubes 
and nanotori. Loyola et al. [47] studied 
symmetry and color symmetry properties of 
Kepler, Heesch and Laves tilings embedded on 
a flat torus and their geometric realizations as 
tilings on a round torus in Euclidean 3-space. 
This study investigates the mechanics of an 
offset nanosector orbiting inside a carbon 
nanotori molecule. The formulations of vdW 
interactions are given in terms of double 
integrals using the continuum approximation 
along with the 6-12 Lennard-Jones (LJ) 
potential function. Moreover, based on the 
Newton’s second law and neglecting the 
gravitational and frictional forces, a simple 
semi-analytical expression is presented to 
evaluate the oscillation frequency. Finally, the 
influences of geometrical parameters on the 
minimum potential energy, vdW interaction 
force and oscillation frequency are examined. 

2. Potential energy and interaction force  
In order to determine the vdW interactions, the 
classical LJ potential function is applied here. 
The LJ potential between two atoms at a 
distance 𝜌 apart is expressed by 

Φ(𝜌) = −
𝐴

𝜌6
+

𝐵

𝜌12
 (1) 

in which 𝐴  and 𝐵  denote the attractive and 
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repulsive constants, respectively. The total 
potential energy is obtained by summing the 
interaction energy for each atom pair as 
follows 

𝐸𝑣𝑑𝑊 = ∑ ∑ Φ(𝜌𝑖𝑗)𝑗𝑖  (2) 

where Φ(𝜌𝑖𝑗) represents the potential energy 

function for atoms 𝑖 and 𝑗 which are located at 
a distance 𝜌𝑖𝑗 . Using the continuum 

approximation which assumes that carbon 
atoms are uniformly distributed over the 
surfaces of the molecules, the double 
summation in Eq. (2) can be replaced by a 
double integral as 

𝐸𝑣𝑑𝑊 = 𝜂1𝜂2 ∫ ∫ Φ(𝜌)𝑑𝑆1𝑑𝑆2𝑆1𝑆2
 (3) 

In the prior equation, 𝜂1  and 𝜂2  indicate the 

mean atomic surface densities of carbon atoms 
on each molecule and 𝜌  denotes the distance 
between two typical surface elements 𝑑𝑆1 and 
𝑑𝑆2. 
Moreover, so as to obtain the vdW interaction 
force, one can differentiate the potential energy 
as 

𝐹𝑣𝑑𝑊 = −∇𝐸𝑣𝑑𝑊 (4) 

3. Force balance for orbiting motion  
In this section, the force balance for an offset 
nanosector orbiting inside a nanotori is briefly 
presented. As shown in Fig. 1, 𝜀 symbolizes the 
eccentricity distance between the centers of 
cross-sections of nanosector and perfect torus, 
in which nanosector is a sector of a perfect 
torus with the tube radius a.  

 

  
(a) (b) 

 
(c) 

Fig. 1. Geometry of the considered mechanism (a) three-dimensional sketch of the nanosector inside a 
nanotori (b) cross-section of the nanotorus in its coordinate (c) cross-section of the nanosector in its 

coordinate 
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The tube radius and ring radius of the nanotori 
are also denoted by𝑏 and 𝑐 , respectively. The 
rotating body experiences three forces while 
turning around the nanotori. These forces 
include vdW force, centrifugal force and the 
force of gravity. It should be mentioned that the 
effect of frictional forces, because of being 
insignificant with respect to other acting forces, 
are neglected in this work [10]. The vdW force 
is modeled by LJ potential as given in Eq. (4). 
The centrifugal and gravitational forces and 
their corresponding potential energies are 
respectively defined by Eq. (5a) and Eq. (5b) as  

𝐹𝑐 = −𝑚𝑅𝜔
2,        𝐸𝑐 = −

𝑚𝑅2𝜔2

2
 (5a) 

𝐹𝑔 = −𝑚𝑔,          𝐸𝑔 = −𝑚𝑔ℎ (5b) 

In the above expressions, 𝑚  is the mass of 
nanosector, 𝑅  is the distance between the 
rotating body and origin, 𝜔  is the constant 
angular velocity, 𝑔 is the acceleration of gravity 
and ℎ is the vertical distance from an arbitrary 
base level. Thus, the total potential energy can 
be calculated from 𝐸𝑡𝑜𝑡 = 𝐸𝑐 + 𝐸𝑔 + 𝐸𝑣𝑑𝑊. The 

preferred position of the orbiting nanosector is 
the location of the minimum total potential 
energy. Based on the Newton’s second law and 
assuming that the center of nanosector is 
defined by (𝑅, 𝛩, 𝑍)  in the cylindrical 
coordinate system, one can arrive at [38] 

𝑚(�̈� − 𝑅𝛩2̇) = −
𝜕𝐸𝑣𝑑𝑊

𝜕𝑅
,     𝑚(𝑅�̈� + 2�̇��̇�) =

−
1

𝑅

𝜕𝐸𝑣𝑑𝑊

𝜕𝛩
 ,       𝑚(�̈� − 𝑔) = −

𝜕𝐸𝑣𝑑𝑊

𝜕𝑍
                    (6) 

in which dot denotes the derivative with 
respect to time. Since, it is assumed that 𝑅 =
𝑐 + 𝜀cos𝜑1  and  𝑍 = 𝜀sin𝜑1  are fixed in the 
space and the nanosector orbits with a constant 
angular velocity around the z-axis, Eq. (6) can 
be simplified to  
𝜕𝐸𝑣𝑑𝑊

𝜕𝑅
= 𝑚𝑅𝜔2 ,   

𝜕𝐸𝑣𝑑𝑊

𝜕𝛩
= 0,   

𝜕𝐸𝑣𝑑𝑊

𝜕𝑍
= 𝑚𝑔 (7) 

4. VdW potential energy and interaction 
force 
In this section, using the continuum 
approximation, the formulations to estimate 
vdW interactions for an offset sector of 
nanotorus orbiting inside a nanotori molecule 
are given. 

4. 1. Potential energy  
The schematic of the nanosector orbiting inside 
an outer torus is shown in Fig. 1. From this 
figure, one can define a typical point on the 
nanotorus in the Cartesian coordinate system 

as 
𝑥𝑡 = (𝑐 + 𝑏cos∅) cos 𝜃 , 𝑦𝑡 = (𝑐 +
𝑏cos∅)sin𝜃,         𝑧𝑡 = 𝑏 sin∅ (8) 

In addition, the location of a typical point on the 
nanosector is given by 

𝑥𝑠 = (𝑐 + 𝑎 cos𝜑 + 𝜀cos𝜑1) cos𝛩,   

𝑦𝑠 = (𝑐 + 𝑎 cos𝜑 + 𝜀cos𝜑1)sin𝛩, 

𝑧𝑠 = 𝑎 sin𝜑 + 𝜀sin𝜑1 (9) 

in which 𝜀 is the distance between the central 
axes of nanosector and outer torus. 
Since the gravitational force is negligible in 
comparison with vdW and centrifugal forces 
[38], the effect of this force is not incorporated 
into the calculations. As a result, one can 
deduce that 𝜑1  is equal to zero. Thus, the 
distance 𝜌   between two typical element 
surfaces can be determined from 

𝜌2 = (𝑏 − 𝑎)2 + 𝜀2 + 2𝑎𝜀 − 2𝑏𝜀 +

4𝑎𝑏sin2 (
𝜙−𝜑

2
) + 4𝑏𝜀sin2 (

𝜙

2
) − 4𝑎𝜀sin2 (

𝜑

2
) +

4(𝑐 + 𝑏𝑐𝑜𝑠𝜙)(𝑐 + 𝑎𝑐𝑜𝑠𝜑 + 𝜀)sin2 (
𝜃−𝛩

2
) (10) 

So, the vdW potential energy can be written as 

𝐸𝑣𝑑𝑊(𝜀) = 𝜂𝑔
2𝑎𝑏 ∫ ∫ ∫ ∫ (−

𝐴

𝜌6
+

2𝜋

0

𝛽

0

2𝜋

0

2𝜋

0
𝐵

𝜌12
) (𝑐 + 𝑏cos𝜙)(𝑐 + 𝑎cos𝜑 +

𝜀) 𝑑𝜃 𝑑𝛩 𝑑𝜙𝑑𝜑 (11) 

where 𝜂𝑔  is the mean surface density of 

graphene.  
Using analytical techniques in order to 
integrate Eq. (11) with respect to 𝜃, the above 
quadruple integral reduces to a triple one as 
follows 

𝐸𝑣𝑑𝑊(𝜀) = 𝜂𝑔
2𝑎𝑏 ∫ ∫ ∫ 𝐺(𝜙, 𝜑)(𝑐 +

𝛽

0

2𝜋

0

2𝜋

0

𝑏cos𝜙)(𝑐 + 𝑎cos𝜑 + 𝜀) 𝑑𝛩 𝑑𝜙𝑑𝜑 (12) 

where 

𝐺(𝜙, 𝜑) = 𝜋∑ ∑
𝐻𝑘𝑓𝑚

(𝑘)

𝑃
3𝑘−𝑚+

1
2(𝑃+𝑄)

𝑚−
1
2

3𝑘
𝑚=1

2
𝑘=1  (13) 

Details for derivation of Eq. (13) are described 
in Appendix A. 
Moreover, 𝑃 and 𝑄 are defined by 

𝑃 = (𝑏 − 𝑎)2 + 𝜀2 + 2𝑎𝜀 − 2𝑏𝜀 +

4𝑎𝑏sin2 (
𝜙−𝜑

2
) + 4𝑏𝜀sin2 (

𝜙

2
) −

4𝑎𝜀sin2 (
𝜑

2
) (14a) 

𝑄 = 4(𝑐 + 𝑏cos𝜙)(𝑐 + 𝑎cos𝜑 + 𝜀) (14b) 

and constants parameters of Eq. (13) are as 
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follows  

{
 
 

 
 
𝐻1 = −𝐴/4, 𝐻2 = 𝐵/128,

𝑓1
(1)
= 3, 𝑓2

(1)
= 2, 𝑓3

(1)
= 3,

𝑓1
(2)
= 63, 𝑓2

(2) = 35, 𝑓3
(2)
= 30,    𝑓4

(2)
= 30 𝑓5

(2)
= 35, 𝑓6

(2)
= 63…       (14c)

By integrating Eq. (12) with respect to 𝛩, the 
vdW potential energy takes the following form 

𝐸𝑣𝑑𝑊(𝜀) = 𝜂𝑔
2𝑎𝑏𝛽 ∫ ∫ 𝐺(𝜙, 𝜑)(𝑐 +

2𝜋

0

2𝜋

0

𝑏cos𝜙)(𝑐 + 𝑎cos𝜑 + 𝜀) 𝑑𝜙𝑑𝜑                       (15) 

Eventually, the semi-analytic formulation 
obtained for the vdW potential energy between 
the two nanostructures can be numerically 
evaluated. The semi-analytical expression 
obtained herein is fast-computing and less 
complex in comparison with the 
Hypergeometric functions. 

4.2. Interaction force 
The vdW interaction force can be obtained by 
differentiating Eq. (15) with respect to 𝑅 as 
 

𝐹𝑣𝑑𝑊(𝜀) =
𝜕𝐸𝑣𝑑𝑊(𝜀)

𝜕𝑅
=

𝜕𝐸𝑣𝑑𝑊(𝜀)

𝜕𝜀
=

𝜂𝑔
2𝑎𝑏𝛽 ∫ ∫ (

𝜕𝐺(𝜙,𝜑)

𝜕𝜀
) (𝑐 + 𝑏cos𝜙)(𝑐 + 𝜀 +

2𝜋

0

2𝜋

0

𝑎cos𝜑)𝑑𝜙𝑑𝜑 (16) 
Using Eq. (13), one can have 
𝜕𝐺(𝜙,𝜑)

𝜕𝜀
=

−𝜋∑ ∑ 𝐻𝑘𝑓𝑚
(𝑘)3𝑘

𝑚=1
2
𝑘=1 (

(3𝑘−𝑚+
1

2
)
𝜕𝑃

𝜕𝜀

𝑃
3𝑘−𝑚+

3
2 (𝑃+𝑄)𝑚−1/2

+

(𝑚−
1

2
)(
𝜕𝑃

𝜕𝜀
+
𝜕𝑄

𝜕𝜀
)

𝑃
3𝑘−𝑚+

1
2(𝑃+𝑄)

𝑚+
1
2

) (17) 

in which 
𝜕𝑃

𝜕𝜀
= 2𝜀 + 2𝑎 − 2𝑏 + 4𝑏sin2 (

𝜙

2
) − 4𝑎sin2 (

𝜑

2
) (18a) 

𝜕𝑄

𝜕𝜀
= 4(𝑐 + 𝑏cos𝜙) (18b) 

5. Oscillation frequency 
Using Eqs. (7) and (16) and neglecting the 
effect of gravity, the angular velocity of motion 

can be written as 

𝜔 = √
𝐹𝑣𝑑𝑊(𝜀)

𝑚(𝑐+𝜀)
 (19) 

The oscillation frequency is also obtained as  

𝑓 =
1

2𝜋
√
𝐹𝑣𝑑𝑊(𝜀)

𝑚(𝑐+𝜀)
 (20) 

and  
𝑚 = 2𝜋𝑎𝑚0𝜂𝑔𝛽(𝑐 + 𝜀) (21) 

in which 𝑚0  is the mass of a single carbon 
atom. 
As seen from Eqs. (16) and (21), both vdW 
interaction force and mass of the rotating body 
are proportional to the angle of nanosector and 
thus the angular velocity is independent of this 
angle. 

6. Result and discussion 
The main results concerning the effects of 
geometrical parameters on the characteristics 
of the considered system and the method used 
are discussed in detail in the next two 
subsections. The system studied in the present 
work is assumed to be generated by bending 
elastically two single-walled carbon nanotubes 
(SWCNTs) in which one has a shorter length 
and the joint between two ends of the larger 
torus is considered seamless. According to this 
configuration, one can be assured that no 
repulsive forces exist between the nanosector 
and the nanotori. Therefore, the sector has 
been sucked into the torus just before the 
closure of the torus with a suction energy as 
same as double-walled carbon nanotubes 
(DWCNTs). The numerical values of the 
constants used in this study are tabulated in 
Table. 1. 

 

Table. 1. Constants values used in the numerical evaluations [16] 

Attractive constant for graphene-graphene 𝐴 = 15.2  (eV × Å6) 

Repulsive constant for graphene-graphene 𝐵 = 240000  (eV × Å12) 

Atom density for a graphene 𝜂𝑔 = 0.3812  (Å
−2) 

Mass of a single carbon atom 𝑚0  = 12 × 1.661 × 10
−27(kg) 

Radius of (16,16) 𝑏 = 10.846 (Å) 

Radius of (20,20) 𝑏 = 13.557  (Å) 
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6.1. Onset configuration   
In this subsection, it is assumed that the 
nanosector and nanotori always remain 
concentric. For the given values of 𝑐 , 𝑎  and 
𝛽, the tube radius of nanotori is determined to 
minimize the vdW potential energy. Thus, in 
this geometry, the orbiting body oscillates 
stably inside the nanotori. 
The effect of changing the sector angle on the 
distribution of vdW potential energy is 
illustrated in Fig. 2.  
According to this figure, as the sector angle gets 
larger the magnitude of minimum potential 
energy increases, while the value of the 
corresponding nanotorus tube radius remains 
unchanged. Moreover, this specific value of 
nanotorus tube radius is calculated in Table. 2. 
As seen, the difference between the tube radii 
of outer and inner nanotorus is calculated 
around 3.4 Å which corresponds to the radius 
difference of inner and outer tubes of MWCNT 
oscillators [11]. Moreover, to obtain the 
oscillation frequency of system, the centrifugal 
energy is equated with the maximum suction 
energy of DWCNTs as exposed in Ref. [40]. It 
must be noted that in this study the maximum 
suction energy is calculated based on Eq. (30) 

given by Ansari and Motevalli [18]. Since both 
centrifugal energy and maximum suction 
energy are proportional to the mass of sector 
or angle of sector, the present oscillation 
frequency is found to be independent of the 
sector angle as demonstrated in Table. 2.  
The obtained results are also in good 
agreement with previous reports given by 
Hilder and Hill [40]. However, their oscillation 
frequency was found to be slightly affected by 
the sector angle.  
 

6.2. Offset configuration 
In this subsection, it is assumed that the cross-
sectional center of the nanosector is located at 
a distance 𝜀 from the cross-sectional center of 
the nanotorus. In this case, the equilibrium 
position of system is determined for different 
geometries. Moreover, the effects of 
geometrical parameters such as ring radius, 
tube radius of nanotorus and sector angle on 
the equilibrium position, distributions of vdW 
interactions and oscillation frequency are 
examined.  
In Fig. 3, for two values of nanotorus tube 
radius, the distribution of vdW potential 
energy and interaction force are displayed 
against the offset position of nanosector. 

 
Fig. 2. Distribution of vdW potential energy for concentric configuration versus outer torus radius for 

various angles of sector (𝑐 = 1500 Å , 𝑎 = 5 Å) 
 
Table. 2. Comparison of the obtained oscillation frequencies with the ones given in Ref. [40] 

𝑎 (Å)
∗
 𝑐 (Å)

∗
 𝛽 (𝑑𝑒𝑔𝑟𝑒𝑒)∗ 

𝑏 (Å) 

Present study 

𝑏 (Å) 

Ref. [40] 

Frequency (GHz) 
Present study 

Frequency (GHz) 
Ref. [40] 

5 1500 1.8 8.49 8.45 0.984 0.962 
5 1500 30 8.49 8.45 0.984 0.984 
5 1500 45 8.49 8.45 0.984 0.984 

6.5 110 45 9.796 9.97 13.027 12.9 
6.78 200 45 10.29 10.225 7.145 7.09 

7 150 45 10.45 10.431 9.4836 9.41 
* Taken from [40] 
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(a) (b) 

Fig. 3. Distribution of (a) potential energy (b) vdW interaction force versus offset position for different 

tube radii (𝛽 = 4.60, 𝑐 = 1500 Å  , 𝑎 = 4.071 Å) 

 

  
(a) (b) 

Fig. 4. Distribution of (a) potential energy (b) vdW interaction force versus offset position for various 

ring radii (𝛽 = 4.60, 𝑏 = 10.846 Å , 𝑎 = 4.071 Å) 
 

In order to clarify the veracity of the present 
result, the vdW potential energy for the offset 
sector is compared with that reported by 
Baowan et al. [16] for an offset SWCNT inside a 
SWCNT of larger radius. To accomplish this, the 

ring radius is taken to be 1500 Å and the sector 
angle is obtained as 4.60 . In this case, the 
nanotori and the sector inside correspond well 
to a MWCNT. As can be seen, for a torus created 
by joining the two ends of a (16,16) CNT and a 

sector with the tube radius of 4.071 Å , the 
minimum potential energy occurs where the 
amount of offset is 3.515 Å . This amount 

changes to 6.303 Å when a (20,20) tube is used 
as the outer torus. These values indicate that 
the sector tends to get closer to the wall of the 
nanotorus as the nanotori tube radius gets 
larger. It should be mentioned that the 
interspacing magnitude between the walls of 
the inner and the outer tube for a stable system 

is always ~3.4Å .  The effect of changing the 

tube radius of the nanotorus on the 
distribution of vdW interaction force is also 
similar to the vdW potential energy alteration. 
The variations of vdW potential energy and 
interaction force with respect to offset position 
of sector are depicted in Fig. 4 for two values of 
ring radius. In conformity with this figure, one 
can deduce that the value of minimum potential 
energy increases by increasing the value of ring 
radius, while the equilibrium position remains 
unaltered.  
The graphs of vdW interaction force in contrast 
have a smooth alternation till around 𝜀 = 3.5 Å 
as shown in the figure. However, after this 
point, the magnitude of vdW interaction force 
considerably increases as the ring radius 
becomes larger. It is also worth mentioning 
that changing the ring radius changes the 
position of minimum vdW interaction force. 
The influence of changing the sector angle on 
the vdW interactions is shown in Fig. 5.  



M. Hosseinzadeh et al.                                                                                                                                                          | 49 

 

CSMech. 01(01), 42-52, (2018)                                                                                                    www.csmech.iaubanz.ac.ir 

 

  
(a) (b) 

Fig.5 Distribution of (a) potentialenergy (b) vdW interaction forceversus offset position for various 
angles of sector(𝑐 = 1500 Å , 𝑏 = 10.846 Å , 𝑎 = 4.071 Å) 

 

 
 

(a) (b) 
Fig. 6. Effect of (a) tube radius (𝑐 = 1500 Å) (b) ring radius (𝑏 = 10.846 Å)on the frequency against 

offset position (𝛽 = 4.60, 𝑎 = 4.071 Å) 

Likewise Fig. 2, changing the sector angle only 
affects the magnitude of minimum potential 
energy and interaction force so that the 
equilibrium position is completely 
independent of this angle. 
Finally, for different geometrical parameters, 
frequency versus offset position of nanosector 
is depicted in Fig. 6.  
As mentioned in Section 5, the oscillation 
frequency does not depend on the angle of the 
sector. Therefore, only the effects of nanotorus 
tube radius and ring radius on the frequency 
characteristics have been investigated. 
According to this figure, there is no oscillation 
frequency until near the equilibrium position 
of the system. In other words, the system starts 
to oscillate after the vdW interaction force 
experiences its positive values. However, after 
this point the magnitude of frequency which is 
in the GHz range considerably increases. 
Finally, it is found that smaller values of ring 

radius provide larger oscillation frequencies 
for a given value of offset position.  

7. Conclusion 
Using the continuum approximation along with 
the 6-12 LJ potential function, the mechanics of 
a nanosector orbiting inside a nanotori 
molecule was studied. To this end, a semi-
analytical formulation was obtained in terms of 
double integrals which enables one to readily 
calculate the vdW potential energy and 
interaction force between the interacting 
entities. Afterwards, based on the Newton's 
second law and ignoring the effects of 
gravitational and frictional forces, a new 
expression was presented to evaluate the 
oscillation frequency. The perfect position of 
nanosector inside carbon nanotorus was 
examined. The effects of geometrical 
parameters on the distributions of vdW 
interactions as well as the corresponding 
equilibrium position and oscillation frequency 



50 |  

 

CSMech. 01(01), 42-52, (2018)                                                                                                    www.csmech.iaubanz.ac.ir 

 

were investigated. It was found that the 
equilibrium position tends to get closer to the 
wall of the outer tube as the outer torus radius 
increases, whereas this position remains 
unchanged as the sector angle or the ring 
radius changes. Besides, it was concluded that 
the obtained oscillation frequency is 
independent of the sector angle. 
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Appendix A 

Here, the details of derivation of Eq. (13) are 
presented. To obtain this equation, integrals of 
the following forms must be calculated 

𝐼𝑛 = ∫
𝑑𝜃

𝜌𝑛
2𝜋

0
        ;  𝑛 = 6,12 (A1) 

in which  

𝜌 = √𝑃 + 𝑄sin2 (
𝜃−𝛩

2
) (A2) 

and 𝑃 and 𝑄 are defined by Eq. (14). 

Substituting  𝑥 =
𝜃−𝛩

2
 and 𝑚 =

𝑛

2
  into Eq. (A.1) 

yields  

𝐼𝑚 = 2∫
𝑑𝑥

(𝑃+𝑄sin2𝑥)𝑚

𝜋−
𝛩

2

−
𝛩

2

 (A3) 

As shown in Ref. [40], the starting angle of the 
above equation is arbitrary, so 𝛩 is taken to be 
zero. Thus, Eq. (A.3) is rewritten as 

𝐼𝑚 = 2∫
𝑑𝑥

(𝑃+𝑄sin2𝑥)𝑚
𝜋

0
= 2∫

𝑑𝑥

(𝑃+𝑄sin2𝑥)𝑚

𝜋

2
0

+

2∫
𝑑𝑥

(𝑃+𝑄sin2𝑥)𝑚
𝜋
𝜋

2

  

 (A4) 
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Substituting  𝑦 = 𝜋 − 𝑥  into Eq. (A4) for the 
interval [𝜋/2, 𝜋], one can arrive at 

𝐼𝑚 = 4∫
𝑑𝑥

(𝑃+𝑄sin2𝑥)𝑚
𝜋/2

0
 (A5) 

Letting 𝑡 = cot𝑥 leads to  

𝐼𝑚 =
4

𝑃𝑚
∫

(1+𝑡2)𝑚−1

(𝑡2+𝛾2)𝑚
∞

0
𝑑𝑡 (A6) 

in which 𝛾 = √(1 +
𝑄

𝑃
) 

Using the substitution  𝑡 = 𝛾tan𝜓 , the above 
formulation can be written as the form below 

𝐼𝑚 =
4

𝑃𝑚𝛾2𝑚−1
∫ (1 +
𝜋/2

0

𝛾2tan2𝜓)𝑚−1 (cos𝜓)2𝑚−2𝑑𝜓  
 (A7) 
Using Newton's binomial expansion, the above 
equation can be expressed as 
𝐼𝑚 =
4

𝑃𝑚
∑ ∫ (

𝑚 − 1
𝑘

)
(sin𝜓)2𝑚−2𝑘−2(cos𝜓)2𝑘

𝛾2𝑘+1
𝜋/2

0
𝑚−1
𝑘=0 𝑑𝜓  

 (A8) 
Finally, after performing the prior equation 
analytically, the following form is obtained for 
Eq. (13) 
𝐺(𝜙, 𝜑) = −𝐴𝐼3 +𝐵𝐼6 =

𝜋∑ ∑
𝐻𝑘𝑓𝑚

(𝑘)

𝑃
3𝑘−𝑚+

1
2(𝑃+𝑄)

𝑚−
1
2

3𝑘
𝑚=1

2
𝑘=1                            (A9)

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 




