مقایسه عملکرد حسگر گازی نانوسیم‌های SnO$_2$ در حضور گاز مایع و بخار انثالول

مریم برزگر و حمید هراتی‌زاده

دانشکده فیزیک، دانشگاه صنعتی شهروند، شاهرود، ایران

Available online: www.jnmr.ir/papers

تاريخ تبی نویسنده: 1392/10/18، تاریخ دریافت نسخه اصلی شده: 1392/2/20، تاریخ پذیرش قطعی: 1392/7/29

چکیده

در این مقاله، نانو‌سیم‌های SnO$_2$ با یک فطر متفاوت به روش رسوب‌دهی بخار شیمیایی (CVD) روزانه‌ای به سیلیکون (1000 سنتر شدید) انرژی شبکه صدا برای پرتو برای درمان و نانشی‌پری SnO$_2$ به عنوان لایه حساس و فعال در ساخت حسگر ایجاد شد. است. برای ایجاد اتصال الکتریکی یک جفت انرژی در طی روزانه ای فعالیت نانو‌سیم‌های SnO$_2$ ساخته و برای دو گزار مناسب و بخیر انثالول بررسی شده است. به منظور بهینه‌سازی حسگر و عملکرد حسگر، حساسیت و نانوسیم‌های SnO$_2$ در گستره دماه 300°C به دست آمده است. ساخت حسگر باعث بهبود حساسیت قابل قبول در شرایط سخت شده شد. این دانه‌ها برای حسگر ماشین‌های فضای ماشین‌های و لPG (حساسیت قبل قبول را داشته)، از طرف دیگر این حسگر سیم‌های پایع‌دهی و با قطعات کوتاهی را برای تشخیص بخار انثالول در دماه کار 200°C از خود نشان داد.

واژه‌های کلیدی: رسوب‌دهی بخار شیمیایی، اکسید، حسگر گاز، گاز مایع، بخار انثالول

1- مقدمه

نیمه‌رسانه‌های اکسید فلزی یکی از مواد مهمی هستند که در حسگرهای گازی بکار برده می‌شوند. وقتی مولکول‌های یک گاز با سطح نیمه رسانه برهمکنش می‌کنند، می‌توانند ویژگی‌های سطحی، حساسیت و پنل سطحی نیمه‌رسانه‌ها را تحت تاثیر قرار دهند. اولین حسگر گازی نیمه‌رسانه‌های مقاوم‌تر است. ساخت حسگرهای نیمه‌رسانه مقاوم‌تر و نیمه‌رسانه‌های مقاوم‌تر و نیمه‌رسانه مقاوم‌تر است. ساخت حسگرهای نیمه‌رسانه مقاوم‌تر و نیمه‌رسانه مقاوم‌تر است. ساخت حسگرهای نیمه‌رسانه مقاوم‌تر و نیمه‌رسانه مقاوم‌تر است.

می‌توانند ویژگی‌های سطحی، حساسیت و پنل سطحی نیمه‌رسانه‌ها را تحت تاثیر قرار دهند. اولین حسگر گازی نیمه‌رسانه‌های مقاوم‌تر است. ساخت حسگرهای نیمه‌رسانه مقاوم‌تر و نیمه‌رسانه مقاوم‌تر است. ساخت حسگرهای نیمه‌رسانه مقاوم‌تر و نیمه‌رسانه مقاوم‌تر است. ساخت حسگرهای نیمه‌رسانه مقاوم‌تر و نیمه‌رسانه مقاوم‌تر است.
محصول می‌شود [3].
در این مقاله، به ساخت جنگل گازی برای نانو‌سیم‌هایهای SnO$_2$ و SnS$_2$، پرداخته شده است. کیفیتی از نانوساختارهای که از زمان کشف نانولوله‌های کربنی در سال 1991 تا کنون، توجه بسیاری را به خود جلب کرده است، نانوساختارهای یک هیستد [4]. این ساختارها به دلیل داشتن نسبت سطح به حجم بالا و انرژی کوچک در حد طول دی جنگل، حساسیت بیشتری به فرآیندهای شیمیایی مطالعه شده است. اینکه در سال‌های گذشته، طبیعت دو چشمه‌ای شیمیایی در سطح زیر اولین سایت‌های هوازی درونی نوری، امکان وجود نوار کوچک در ساختارها، یکی از اندکترین خاصیت‌های استخوانی می‌باشد.

فناوری‌های تجاری

حسن ساخته شده یک سیستم مقاوم به ماده فعال آن نانوسیم‌هایهای SnO$_2$ رشد داده شده بر روی زیرلایه‌های اولیه کوتور شکل شده است. جهت استفاده از ماده فعال آن نانوسیم‌هایهای گازهای خاص به روش CVD انتخاب شده است. در این مطالعه، بیش از ۱۰۰ نمونه می‌شود که در دو چشمه‌ای از کراتون و Si و SiO$_2$ (البوسی) در نوری می‌باشد. فرآیند ساختارهای نانوساختارهای که از زمان کشف نانولوله‌های کربنی در سال 1991 تا کنون، توجه بسیاری را به خود جلب کرده است، نانوساختارهای یک هیستد [4]. این ساختارها به دلیل داشتن نسبت سطح به حجم بالا و انرژی کوچک در حد طول دی جنگل، حساسیت بیشتری به فرآیندهای شیمیایی مطالعه شده است. اینکه در سال‌های گذشته، طبیعت دو چشمه‌ای شیمیایی در سطح زیر اولین سایت‌های هوازی درونی نوری، امکان وجود نوار کوچک در ساختارها، یکی از اندکترین خاصیت‌های استخوانی می‌باشد.

فناوری‌های تجاری

حسن ساخته شده یک سیستم مقاوم به ماده فعال آن نانوسیم‌هایهای SnO$_2$ رشد داده شده بر روی زیرلایه‌های اولیه کوتور شکل شده است. جهت استفاده از ماده فعال آن نانوسیم‌هایهای گازهای خاص به روش CVD انتخاب شده است. در این مطالعه، بیش از ۱۰۰ نمونه می‌شود که در دو چشمه‌ای از کراتون و Si و SiO$_2$ (البوسی) در نوری می‌باشد. فرآیند ساختارهای نانوساختارهای که از زمان کشف نانولوله‌های کربنی در سال 1991 تا کنون، توجه بسیاری را به خود جلب کرده است، نانوساختارهای یک هیستد [4]. این ساختارها به دلیل داشتن نسبت سطح به حجم بالا و انرژی کوچک در حد طول دی جنگل، حساسیت بیشتری به فرآیندهای شیمیایی مطالعه شده است. اینکه در سال‌های گذشته، طبیعت دو چشمه‌ای شیمیایی در سطح زیر اولین سایت‌های هوازی درونی نوری، امکان وجود نوار کوچک در ساختارها، یکی از اندکترین خاصیت‌های استخوانی می‌باشد.
کانالیست با نسبت ۱ به ۱ دو بانه کوارتز استفاده شد و گازهای آركو و اکسیژن به ترتیب به عنوان گاز حامل و گاز ردیابی استفاده گردید. زیرلایه‌های از جنس‌های مختلف مانند کوارتز، سیلیکون، آلومینیوم و سیلیکون (۱۰۰) برای رشد نانوساختارها در فرآیندهای مختلف بین ۶ تا ۱۰ cm کاربرد داشتند (شکل ۱).

بوته Haüy مواد اولیه قرار داده شدند (شکل ۱).

شکل ۲: a) راکتور تست گازی و b) طرح شماتیک نمونه نهایی شده.

\(\text{SnO}_2 \) به کمک پرتابل‌های سیستم CVD یک برد شده در این تحقیق که شامل کوره دو ناحیه‌ای و شبکه‌ای یک‌پلاک و ۵ تصور شما در هر زیرلایه‌های کوارتز، آلومینیوم و سیلیکون درون کورهٔ الکترونیکی.

بررسی نانوساختارتهای اکتکترون‌سکوب (HR-TEM، JEOL2100F) و نانوساختارتهای الکترون‌سکوب الکترونیکی گسیل‌ماد مدل (Bruker AXS) و نانوساختارتهای الکترون‌سکوب الکترونیکی گسیل‌ماد مدل (FESEM، Hitachi-4160) انجام شد (شکل ۲). اندازه‌گیری‌های الکترونیکی با استفاده از روش‌های انتخابی یک متر مکسیموم طول در نظر گرفته شد. میزان حجم نمونه به ۱×۱ cm تخمینی کیفیت نانوساختارها در دمای مختلف SnO۲\(_2 \) در حضور و گاز‌های ساختنی دانه‌های مختلف LPG در اداره‌گیری شد.

3- نتایج و بحث

3-1- آنالیز ساختاری

شکل ۳-۱ تغییرات انتقالی اکتکترون‌سکوب (HR-TEM، JEOL2100F) و نانوساختارتهای الکترون‌سکوب الکترونیکی گسیل‌ماد مدل (Bruker AXS) و نانوساختارتهای الکترون‌سکوب الکترونیکی گسیل‌ماد مدل (FESEM، Hitachi-4160) و فوتویولوئیس مدل (Ocean Optics 2000HR) انجام شد. اندازه‌گیری‌های الکترونیکی با استفاده از روش‌های انتخابی یک متر مکسیموم طول در نظر گرفته شد. میزان حجم نمونه به ۱×۱ cm تخمینی کیفیت نانوساختارها در دمای مختلف SnO۲\(_2 \) در حضور و گاز‌های ساختنی دانه‌های مختلف LPG در اداره‌گیری شد.

شکل ۳: a) نانوساختارهای الکترون‌سکوب (HR-TEM، JEOL2100F) و نانوساختارتهای الکترون‌سکوب الکترونیکی گسیل‌ماد مدل (Bruker AXS) و نانوساختارتهای الکترون‌سکوب الکترونیکی گسیل‌ماد مدل (FESEM، Hitachi-4160) و فوتویولوئیس مدل (Ocean Optics 2000HR) انجام شد. اندازه‌گیری‌های الکترونیکی با استفاده از روش‌های انتخابی یک متر مکسیموم طول در نظر گرفته شد. میزان حجم نمونه به ۱×۱ cm تخمینی کیفیت نانوساختارها در دمای مختلف SnO۲\(_2 \) در حضور و گاز‌های ساختنی دانه‌های مختلف LPG در اداره‌گیری شد.

شکل ۲: a) راکتور تست گازی و b) طرح شماتیک نمونه نهایی شده.
نقش شیکه در صفحات بلوری نانوسمیتهای سنترشده می‌باشد. نمایشگر کیفیت پریست ۱۰۰ واریز یک درجه را در بر می‌گیرد. پروتوسوم توسط پرتو Cu-Kα با طول موج ۱/۵۴۲.۴ انجام شده است. نتایج نشان داد که نانوسمیتهای SnO۲ دارای ساختار نرمال را است. در نوار رواج با خلول فازی بسیار بالا بوده و هیج قطعه‌ای که حاکی از ناخالصی یا نیش همکاری نمی‌باشد. نمایشگر کیفیت پریست در طبقه XRD نمونه‌ها با پانگ میزان بالای کرستالی و کدنساتیشن نانوسمیتهای SnO۲ سنترشده و کردنی. قطر متوسط نانوسمیتهایی که داده شده به روی زیرلایه کوارتز کمی بیشتر از نمونه‌های قبلی می‌باشد. HR-TEM نانوسمیتهای SnO۲ سنترشده بر روی زیرلایه کوارتز را نشان می‌دهد. فاصله صفحات بلوری به وضوح قابل مشاهده می‌باشد و این فاصله برای یک نانوسمیت انتخابی که در تصویر نشان داده شده است در حدود ۱/۲ nm است. تصویر ۴ نماینده بر ساختار تک کرستالی و یکنواخت نانوسمیتهای SnO۲ است و هیچگونه دنده‌کننده و
مورفولوژی‌های متوفات در مقالات وجود دارد [33].

![نمودار 1](image1.png)

نمودار 1: نمودار سیاه‌سیال SnO2–SnO2

اهرامی نتش تیپ جاهای آکسیژن در گیلیومهای و خواص حسگر گاز آکسیژن قابل به‌خوبی پذیرفته شده است. نمودار 6 طیف فوتولومنیسنس نمونه‌های اثری در دمای انتقال را نشان می‌دهد. وجود یک پیک قوی در طول موج 580 nm را می‌توان به تیپ جاهای آکسیژن که از دیدگاه موجود در آکسیژن‌های فلزی به حساب می‌آیند نسبت داد [24] و یک دیگر در ناحیه آبی و بنفش دیده می‌شود. به طول موج 840 nm مربوط به برهمکنش بین حالت‌های الکترونی تیپ جاهای آکسیژن و دیگر نقص‌های شبکه (مانند تیپ‌های جاهای با انتقال قلیع درون شبکه) می‌باشد [25].

![نمودار 2](image2.png)

نمودار 2: نمودار سیاه‌سیال SnO2–SnO2

سنجش‌های حسگر گاز LPG

تمام‌های تیپ‌های شده در دماهای مختلفی از دمای انق燃气 300°C تا 700°C گرسته شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای جلوگیری از برخورد گاز با دماهای مختلف در جریان حسگر‌های شده و در این دماها و حسگری برای JRM

![نمودار 3](image3.png)

نمودار 3: نمودار سیاه‌سیال SnO2–SnO2

ساخت تک بلوری نشان داده شده در تصویر شکل 4 را تصویب می‌کند.

![نمودار 4](image4.png)

نمودار 4: نمودار سیاه‌سیال SnO2–SnO2

شکل 4- تصویر های HR-TEM از نمونه‌های SnO2-RRM ساخته بر روی زیرلاه کوارتر

![نمودار 5](image5.png)

نمودار 5: نمودار سیاه‌سیال SnO2–SnO2

شکل 5- تشکیل ساختار کرستالی SnO2-RRM

تویی ساخته بر روی زیرلاه کوارتر با SnO2-RRM. Ba
کار بهینه حسگر، پاسخ آن در دماهای مختلف از 50 تا 300 °C بررسی شده است.

![گراف](image)

شکل 8: پاسخ حسگر به گاز اتیلن در غلظت 1000 ppm در دمای کار 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

مکانیزم حسگری از سطح سطح در مکانیزم سطح مولکول‌های SnO₂ را می‌توان با استفاده از تئوری جابجایی اکسیژن و دی‌اکسید اکسیژن گازی جدید شده به عوارض دهند و با جذب اکسیژن از نحوه جذب حسگر، شکل 8: پاسخ حسگر به گاز اتیلن در غلظت 1000 ppm در دمای کار 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

\[
O_2 (\text{gas}) \rightarrow O_2 (\text{ads}) \\
O_2 (\text{ads}) + e^- \rightarrow O^2^- (\text{ads}) \\
O^- (\text{ads}) + e^- \rightarrow 2O^- (\text{ads})
\]

در دماهای بالا، اکسیژن جذب شده به دام الکترون‌های نوار هدایت را روی سطح SnO₂ در اینجا زمان پاسخی را در دمای 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

مکانیزم حسگری از سطح سطح در مکانیزم سطح مولکول‌های SnO₂ را می‌توان با استفاده از تئوری جابجایی اکسیژن و دی‌اکسید اکسیژن گازی جدید شده به عوارض دهند و با جذب اکسیژن از نحوه جذب حسگر، شکل 8: پاسخ حسگر به گاز اتیلن در غلظت 1000 ppm در دمای کار 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

\[
O_2 (\text{gas}) \rightarrow O_2 (\text{ads}) \\
O_2 (\text{ads}) + e^- \rightarrow O^2^- (\text{ads}) \\
O^- (\text{ads}) + e^- \rightarrow 2O^- (\text{ads})
\]

در دماهای بالا، اکسیژن جذب شده به دام الکترون‌های نوار هدایت را روی سطح SnO₂ در اینجا زمان پاسخی را در دمای 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

مکانیزم حسگری از سطح سطح در مکانیزم سطح مولکول‌های SnO₂ را می‌توان با استفاده از تئوری جابجایی اکسیژن و دی‌اکسید اکسیژن گازی جدید شده به عوارض دهند و با جذب اکسیژن از نحوه جذب حسگر، شکل 8: پاسخ حسگر به گاز اتیلن در غلظت 1000 ppm در دمای کار 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

\[
O_2 (\text{gas}) \rightarrow O_2 (\text{ads}) \\
O_2 (\text{ads}) + e^- \rightarrow O^2^- (\text{ads}) \\
O^- (\text{ads}) + e^- \rightarrow 2O^- (\text{ads})
\]

در دماهای بالا، اکسیژن جذب شده به دام الکترون‌های نوار هدایت را روی سطح SnO₂ در اینجا زمان پاسخی را در دمای 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

مکانیزم حسگری از سطح سطح در مکانیزم سطح مولکول‌های SnO₂ را می‌توان با استفاده از تئوری جابجایی اکسیژن و دی‌اکسید اکسیژن گازی جدید شده به عوارض دهند و با جذب اکسیژن از نحوه جذب حسگر، شکل 8: پاسخ حسگر به گاز اتیلن در غلظت 1000 ppm در دمای کار 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

\[
O_2 (\text{gas}) \rightarrow O_2 (\text{ads}) \\
O_2 (\text{ads}) + e^- \rightarrow O^2^- (\text{ads}) \\
O^- (\text{ads}) + e^- \rightarrow 2O^- (\text{ads})
\]

در دماهای بالا، اکسیژن جذب شده به دام الکترون‌های نوار هدایت را روی سطح SnO₂ در اینجا زمان پاسخی را در دمای 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

مکانیزم حسگری از سطح سطح در مکانیزم سطح مولکول‌های SnO₂ را می‌توان با استفاده از تئوری جابجایی اکسیژن و دی‌اکسید اکسیژن گازی جدید شده به عوارض دهند و با جذب اکسیژن از نحوه جذب حسگر، شکل 8: پاسخ حسگر به گاز اتیلن در غلظت 1000 ppm در دمای کار 350 °C، زمان پاسخ در هر 5-3/4 می‌باشد که نتیجه با آزمایش است.

\[
O_2 (\text{gas}) \rightarrow O_2 (\text{ads}) \\
O_2 (\text{ads}) + e^- \rightarrow O^2^- (\text{ads}) \\
O^- (\text{ads}) + e^- \rightarrow 2O^- (\text{ads})
\]
سال پنجم، شماره 13، بهار 1392
مقایسه عملکرد حسگر گازی

شیمیایی: می‌شود، سپس گونه‌های اکسیژن‌زن جذب شده گاز هدف را اکسیژن در می‌کند و باعث انتقال الکترون از مولکول‌های گاز به O2

شکل (۴) پاسخ حسگر گاز ساخته شده از نانوسیمیاهی SnO2 به در صورت وجود اکسیژن نیترات شده هماهنگ می‌شود و باعث کاهش پاسخ حسگر در ۳۰٪ می‌شود.

شکل (۵) در صورت لپ‌گاز، بعد از خروج گونه‌های احیا، وارد گاز LPG به دست آمده و باعث کاهش حساسیت می‌شود.

دقت آگاهسازی بخار اکسیژن به‌طور عمومی گاز LPG (ما به لپ‌گاز) با ورود گاز نیترات به باکتری حساس سبب افزایش تولید اکسیژن در باکتری می‌شود.

کره نانوسیمیاهی SnO2 که در

در صورت وجود گاز LPG به دست آمده، باعث کاهش حساسیت می‌شود.

کره نانوسیمیاهی SnO2 که در

در صورت وجود گاز LPG به دست آمده، باعث کاهش حساسیت می‌شود.
мابع در دمای بالاتر با حساسیت بیشتر نسبت به بخار
انالوژ است.

4- نتایج گیری

نانوپودر SnO\textsubscript{2} برای کاربرد حسگر گاز به صورت
موفقیت آمیزی به روش CVD در یک گروه الکترونیک تحت
خلای حضور شده. الگوریتم یافتن نمونه‌های زننده با
SnO\textsubscript{2} با SnO\textsubscript{2} با SnO\textsubscript{2}
SnO\textsubscript{2} با SnO\textsubscript{2} با SnO\textsubscript{2}
XRD و TEM و SEM
کمیت خاصیت و شیب مناسب ار تصدیق می‌گردد.
نتایج حسگر گاز و بخار انالوژ دستاورد
چشمشگری را نشان می‌دهد که زمان پاس دهی
و بازیابی بخار انالوژ به ترتیب کمتر از
۲۰ و ۹۰ ثانیه بسته گرد که نشان نماید زمان پاس دهی
SnO\textsubscript{2} SnO\textsubscript{2} SnO\textsubscript{2} SnO\textsubscript{2}
مانند باعث خروج حسگر با حساسیت خوب و
سرعت عمل بالاست. حساسیت پهنای حسگر گازی
SnO\textsubscript{2} در دمای ۶۰ و ۲۰۰ به گاز
SnO\textsubscript{2} SnO\textsubscript{2} SnO\textsubscript{2} SnO\textsubscript{2}
ماهی و بخار انالوژ بسته گرد. یاهدی
در نظر داشت که
حسنیت خوب حسگر گازی ساخته شده از SnO\textsubscript{2}
در تشخیص گاز ماهی و نیز کوتاه زمان پاس دهی
SnO\textsubscript{2} و بازیابی در تشخیص بخار انالوژ از نتایج به ارتباط
تحقیق است که برای کاربردهای صنعتی می‌توامد مورد
توجه قرار گیرد.

5- سیاستگرایی

مؤلفین از علی معافی از دانشگاه RMIT استرالیا به خاطر
تهیه تصادف HR-TEM سیاستگرایی می‌کنند.

مراجع

شده، با برایان بیاید از آزمایش چگالی حاملهای الکترونی در
لاهه‌های حساس SnO\textsubscript{2}. این افزایش چگالی
الکترون‌ها در نوار به دلیل الکترون‌های SnO\textsubscript{2} باعث کاهش
مقایسه حسگر در حضور گاز احیا کننده می‌شود.
گونه‌های آکسیژن با انالوژ و اکسیژن‌های بیچیده‌ای انجام
می‌دهند که در زیر اورده شده است [31]:

\[\text{C}_2\text{H}_3\text{OH} + 6\text{O}^- \rightarrow 3\text{H}_2\text{O} + 2\text{CO}_2 + 6e^- \] (6)

\[\text{C}_6\text{H}_{10} + 13\text{O}^- \rightarrow 5\text{H}_2\text{O} + 4\text{CO}_2 + 13e^- \] (7)

این واکنش‌ها در حالت که گاز‌ها بطور کاملاً روی
سطح سکته شوند اتفاق می‌افتد.

با مقایسه سکته حسگر برای هر دو مانی و بخار
انالوژ نمونه‌های 8 و 6 می‌توان دید اینکه
نمودار پاس گاز بیشتر به نمودار پاس شده است. به
طولانی‌تر بودن زمان پاس دهی و بازیابی حسگر برای گاز
ماهی نسبت به بخار انالوژ است. هم‌اکنون که به
شکل 9 این نمونه می‌توان دید، هنگامی که زمان پاس دهی حسگر کاهش
می‌یابد به این معنا است که حسگر سرعت بیشتر به حالت
اشاغ می‌رسد و نمودار پاس حسگر به شکل یک خط
راست در مقدار ماکزیمم حساسیت خود در می‌آید.

3- گزینش گاز

گزینش گاز به عنوان توانایی حسگر در تشخیص یک گاز
در بین گازهای دیگر است. گزینش گاز می‌تواند به
صورت مقایسه حساسیت برای هر گاز مورد مطالعه، تعیین
شود (31). افزایش گزینش گاز حسگر را برای یک گاز
مورد مطالعه نشان می‌دهد که (a) مربوط به گاز مورد
مطالعه دیگر و (b) مربوط به گاز هدف می‌باشد.

Selectivity (Sg)=Sensitivity\textsubscript{Gas (a)}/Sensitivity\textsubscript{Gas (b)} (8)

گزینش گاز نیز نسبت به گاز حسگر می‌باشد بطوریکه
ناتوانی‌های SnO\textsubscript{2} در دمای 250 °C حساسیت بیشتر
به 1000 ppm مان شناخته می‌باشد به
بخار انالوژ در دمای 200 °C. که به معنی تشخیص گاز

\[\text{C}_2\text{H}_3\text{OH} + 6\text{O}^- \rightarrow 3\text{H}_2\text{O} + 2\text{CO}_2 + 6e^- \] (6)

\[\text{C}_6\text{H}_{10} + 13\text{O}^- \rightarrow 5\text{H}_2\text{O} + 4\text{CO}_2 + 13e^- \] (7)