بررسی اثرات پرپروتکس باکتوستول و اسید فولیک بر فاکتورهای خونی و ایمنی بجه (Aciapenser nudiventris Lovetsky)

ماهی شبی (1829)

نگین دلسوخ گی‌ب، حسین خراشی؛ محمود مصطفی د. علی‌پرضا شاوری‌دست

h.khara1974@yahoo.com

1- دانشکده آموزشی واحد لاهیجان، دانشکده منابع طبیعی، کارشناسی ارشد گروه شیلات، لاهیجان ایران.
2- دانشکده آموزشی واحد لاهیجان، دانشکده منابع طبیعی، استادیار گروه شیلات، لاهیجان ایران.
3- موسسه تحقیقاتی بنیان نماهایان دریای خزر، مرکز ایران.

تاریخ دریافت: 97/11/9 تاریخ پذیرش: 97/12/17

چکیده

زمینه و هدف: ماهی شبی از جمله ماهایان خاویاری دریای خزر است که به‌طور بالقوه در میانه و اسید فولیک Pedicoccus acidilactici

북تد بر سالم می‌شود و استحکام درمان دارد. هدف از این زودهنگ بردنسی این فردیکورهای خونی و ایمنی ایمنی در آنها اندوزه گیری

بر روش کار: تعداد 100 عدد ماهی شبی به‌طور تصادفی در هر دو گروه درمان شدند. گروه اول گروه فیزیکی سالم داشت و در گروه دوم گروه فولیک استفاده گردید.

نتیجه‌گیری: اخلاصات بهبود بهبود بهبود در گروه دوم، بهبود در گروه اول مشاهده گردید.

واژه‌های کلیدی: ماهی شبی، پرپروتکس، اسید فولیک، فاکتورهای خونی، ایمنی.
باکتریایی در گروه پروتوبیکسیک (24)، بعد از یک پایان دوره تغذیه نود روزه، میگویا در معرض Vibrio harveyi باکتری بیماری‌زا
از دو روز، میگویا تیمار پروتوبیکسیک آبزی‌های بالاتری (25) در مقایسه با گروه شاهد (25) نشان داده، که در مدت 0.5 کلمه P< معنی‌دار بود. تحقیقات Penaeus xannamenei و Gullian (2007) نشان می‌دهد که اسفاده‌ای از پروتوبیکسیک Bacillus و Vibrio های باکتریایی شامل در تغذیه این میگویا تاثیر منجر به افزایش رشد. در نهایت گروه بلهک در تغذیه سنتی این سیم آن ها نیز نتیجه عمده ای را داده می‌باشد (14). این نتایج نشان داد که فلوکس M. auratus مناسب و با توانایی دائمی و M. monodon را در ترکمک‌های بالای پرورش که میثاق غذاهای طبیعی فقط را حفظ می‌کند، افزودن ونتایم به جهت غذایی از این میثاق خاص برخوردار می‌گردد (15). در تغذیه ماهیان ونتایم اسید فلوکس نفیس مهمی در انتقال برنده شده و سلامت ماهی دارد. این فلوکس برای شکل‌گیری طبیعی گلیوبلاست فرمزی خون ضروری است. همچنین این ونتایم در مکانسی‌های اندازه‌گیری کریستال ماتا‌پورینسیس، اسیدهای آمبین و پیوست‌های پدیده و پیروزش ممکن است. کم‌مواد و با ونتایم در ماهی Armatha و پرورش این ونتایم در ماهی عجیب کاهش ایجاد شده و رشد، پرشینی، شکندگی باله‌های 26 ماهی غذاهایی در ماهیان تغذیه شده با رژیم غذاهای 26 میلی‌گرم اسید فلوکس در کیلوگرم غذا به طور معنی‌داری بیشتر از ماهیان تغذیه شده با 30 میلی‌گرم اسید فلوکس در کیلوگرم غذا و ماهیان شاهد بود (29). آن ها اسید فلوکس مورد نیاز رژیم غذاهای میگویی Penaeus دست آموز (28). میلی‌گرم اسید فلوکس در کیلوگرم غذا به طور معنی‌داری بیشتر از ماهیان تغذیه شده با 34 میلی‌گرم اسید فلوکس در کیلوگرم غذا و ماهیان شاهد بود (29). آن ها اسید فلوکس مورد نیاز رژیم غذاهای میگویی Penaeus دست آموز (28).
یکی از نتایج مربوط به زیست‌سنجی (Acipenser nudaevinus) شیب اندام‌های گربه و ژری طول و توانایی بومی (ریزت توته) با میانگین وزنی 18/34±0/15 گرم انخاب و با ۱۰ عدد در هر اکت شدن. در ۷ تیم‌اندازی به ترتیب شامل تیمار ۴۸ میلی گرم اسید فولیک و کیلوگرم جهور، تیمار ۲ پروپیونیک ۴۰۰ گرم در هر ۲۰ گرم، تیمار ۲ اسید فولیک ۴ میلی گرم پروپیونیک ۴۰۰ گرم، تیمار ۴ اسید فولیک ۴ میلی گرم پروپیونیک ۴۰۰ گرم و تیمار ۷ کنترل) در ۳ تکرار به مدت ۸ هفته تغذیه شدند. (۱) طرح کلی این مطالعه: Completely Randomized Design

جبردهای غذایی و نشیه‌های آن

به عنوان نهاده‌های غذایی، این استرکتیفیت غذایی مورد مutar جهت آنالیز آزمایشگاهی (آزمایشگاه آنالیز غذایی مرکز تحقیقات و آزمایشگاه دانشگاه گیلان و اینستیتو تحقیقات ماهیان خانواده) متقابل گردید. تا بر اساس اطلاعات صحیح از ترکیب مواد اولیه نسبت به تنظیم جبردها اقدام گردید (جدول ۱). با استفاده از یک اکسید آزمایشگاهی کیلکا عمل آوری شده در دمای ۲۰ ۰ سی دهان با ۱۲۰ گرم پروپیونیک و رژیم ذرات و روغن ماهی کیلکا (به نسبت مساوی) به‌عنوان منبع چربی و آرد گندم به‌عنوان منبع کربوهیدرات، فست چربی حاوی سطحی بکسان پروریلین P/E (۰/۷۴) چربی (۱/۴) خواسته (۱/۷) با نسبت ۲۲/۱ میلی گرم پروپیونیک در کیلو گرم فرموله شدن (۱۰ پس از تنظیم و تغذیه درصد هر یک از اجزای سازند جبردها اقدام به ترکیب و آماده‌سازی آن ها توسط دستگاه بلزن CPM گردید. بلژیکا به روز ۲ میلی‌تر نهایی و به مدحت ۳۸ ساعت در دستگاه خشک کن، در دمای ۳۶ درجه سانتی‌گراد به منظور ماهی‌های نهایی در ماهی‌های ۲۰/۱ میلی‌تر نهایی و به مدت ۲۰ ساعت در دستگاه خشک کن، در دمای ۳۶ درجه سانتی‌گراد به منظور
اندازه‌گیری شاخص‌های خونی (گلوبول فرمز، گلوبول سفید، هیپوگلوبین، همانوتورکت و فاکتورهای ایمنی (لیبروز، ایمونوتوربیدیمتری IgM)) به آزمایشگاه آزمایشگاه ارسال گردید. لازم به ذکر است در ههگام این تست از مواد به‌همین‌کننده به عنوان احتمال‌ناپذیر بر روی سطح شاخص‌های خونی استفاده نگرفته (31).

روش اندازه‌گیری فاکتورهای خونی و ایمنی سفارش گلوبول‌های سفید (WBC) با استفاده از بی‌پ سلول‌های قرمز (MCH), میان‌متر و (هدروکنتر) با توجه به فاکتورهای ایمنی گلوبول‌های سفید شمارش‌شده در عدد 100000 ضرب م می‌گردد (32).

شمارش‌گلوبول‌های سفید (RBC) با استفاده از بی‌پ میکروسئبد، با وقت 1 بی‌پ ماده رقیق کننده ریس، شمارش نمونه در 5 خانه متری آم شمارش‌شده و در عدد 100000 ضرب می‌گردد (32).

اندازه‌گیری غلظت ایمونوتوربیدیمتری کل: 1 میلی لیتر از هر نمونه سرم با 2 میلی لیتر از محلول پلی اتیلن گلیکول 37٪ مخلوط و به 2 ساعت برای بایین آوردند. ایمونوتوربیدیمتران که سپس یک میکروزری‌نده سانترافیوزور در 500 دور در 40 دقیقه سانتی‌گراد گردید به‌وسیله کمپیوتر خبره شد. (32)

شمارش صورت گرده (MCH): 0.73 نمونه سرم را از میکرو همانوتورکت را از خون پرکرده، بر 4 مساد مشترک انتخابه لوله با خمیر همانوتورکت، لوله را با سانترافیوزور با دور 70000 دقیقه سانترافیوزور کرده و با خط کش مخصوص، میزان آن بر حسب درصد قرارت می‌گردد (32).

اندازه‌گیری هیپوگلوبین (Serum albumin) به میزان میکرو همانوتورکت با در نظر گرفتن قرارت می‌گردد (32).

اندازه‌گیری آینده ام (Hb): اندازه‌گیری آن به روش سیانی می‌باشد. هیپوگلوبین و با اسکایکوفاکتورهای ایمنی IgM از V-clot Digest مورد استفاده قرار می‌گیرد (33).

تحلیل آماری: برای رسم نمودارها از برنامه SPSS SPSS نرم‌افزار ام‌اف‌اکس لثم‌الک (Excel) و جهت تجزیه و ارزیابی مقدارهای نرم‌افزاری استفاده گردید. به‌طور عمومی که تا نهایی به نرم‌افزار داده‌ها آزمون (Shapiro-wilk) در سطح اطمینان 95٪ و دانک (Oneway ANOVA) به کار گرفته شده و در موافقت که داده‌ها هر دو واریانس نسبی بایستی با شرایط مشابه که داده‌ها نیز توانایی ایجاد تک‌پک آزمون Kruskal-Wallis داده شده و بالاتر گردید (33).

اندازه‌گیری غلظت ایمونوتوربیدیمتری IgM میکرو‌سیئا و اسکایکوفاکتورهای ایمنی IgM (Immunoturbidimetric) روش موجود در سرم خون با آنتی‌بادی‌های پلی کلونال موجود در محلول‌های تامونی شکل گرفتگی داده و باعث کاهش شدن محلول‌های سرم شده. شدت کاندیده‌ی ایجاد شده با مقدار
فصل‌های علمی بی‌هوشی فیزیولوژی و تكوین جانوری شماره یک‌پانزدهم، جلد ۳، شماره ۴، پاییز ۹۳

مین – وینتی (Mann-Whitney)

تراکم غلظت‌ و آنتی‌توپ یافته در تعدادی

جدول ۱ - تراکم غلظتی و آنتی‌توپ یافته جدول شاهد

<table>
<thead>
<tr>
<th>شماره</th>
<th>تراکم غلظتی</th>
<th>آنتی‌توپ یافته</th>
</tr>
</thead>
<tbody>
<tr>
<td>354</td>
<td>آرد ماهی</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>بودر کونیت</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>نختر</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>گل‌ونگ کندم</td>
<td>300</td>
</tr>
<tr>
<td>300</td>
<td>آرد کندم</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>نت در نمک</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>ونامین بریمکس</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>بریمکس معدنی</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>میانتین</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>لاژین</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>یلادس</td>
<td>65</td>
</tr>
<tr>
<td>65</td>
<td>روغن ماهی</td>
<td>بروئنین (گرم در کیلوگرم) 87.4</td>
</tr>
<tr>
<td>بروئنین</td>
<td>90</td>
<td>جربی</td>
</tr>
<tr>
<td>90</td>
<td>خاکستر</td>
<td>55.2</td>
</tr>
<tr>
<td>55.2</td>
<td>انرژی ناخاله (کالژول در کیلوگرم جربا) 189.7</td>
<td></td>
</tr>
<tr>
<td>189.7</td>
<td>نسبت بروئنین به انرژی (سیلگوم در کیلوگرم) 2.138</td>
<td></td>
</tr>
</tbody>
</table>

نتایج

با توجه به اهمیت فاکتورهای محیطی از جمله اکسیژن محلول، pH و تاثیر آن‌ها بر تغذیه و در نهایت رشد ماهیان، این عواملها در تمام مدت پرورش بطور روزانه کنترل گردید. نتایج پارامترهای یکفی آب‌هیچه گونه اختلاف معنی‌داری را در طول دوره پرورش نسبت به یکدیگر نشان ندادند. (P ≥ 0.05) (جدول ۲) نتایج این تحقیق نشان داد که با افزایش مساحت و تبادلات اسید فولیک و بروئنین در تیمارها شاخص‌های خویش اندازه‌گیری شده بطور معنی‌داری افزایش
جدول ۳- فاکتورهای فیزیک‌شناسی اندام‌های گیری شده در طول مدت بروش

<table>
<thead>
<tr>
<th>دوره بروش با غذای کسانه</th>
<th>میزان زمانی</th>
<th>فاکتورهای مبتنی علی‌کره (درجه سانتی‌گراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روزهای ۱۸۶۹ ۲۰۶۱ ۲۲۶۳ ۲۴۶۵ ۲۶۶۷ ۲۸۶۹</td>
<td>۱ ۲ ۳ ۴ ۵ ۶ ۷</td>
<td>مبتنی علی‌کره ۱ ۲ ۳ ۴ ۵ ۶ ۷</td>
</tr>
<tr>
<td>میزان مایع غذایی (میلی‌گرم)</td>
<td>۷۸ ۷۵ ۷۳ ۷۱ ۷۸ ۷۶ ۷۴</td>
<td>مبتنی مایع غذایی ۷ ۸ ۹ ۱۰ ۱۱ ۱۲ ۱۳</td>
</tr>
<tr>
<td>pH</td>
<td>۷ ۷ ۷ ۷ ۷ ۷ ۷</td>
<td>مبتنی pH ۷ ۷ ۷ ۷ ۷ ۷ ۷</td>
</tr>
</tbody>
</table>

هم چنین میزان نرخ تولید پروتئین، میانگین علی‌کره تا ۱۷۷/۵ (درصد) (۱۵/۵ ± ۶/۰ درصد) میزان انتخاب میانی دار آماری نیود (P<0/005). نتایج این بررسی نشان داد که فاکتورهای اینم اندام‌های گیری شده تأثیر مثبتی ندارند.

بحث و نتیجه‌گیری

در تحقیق حاضر افزودن سطوح متفاوت پروتئین و اسید فولیک به جیره های آزمایشی منجر به افزایش تعداد کل گلوبول های سفید خون در تیمارهای آزمایشی نسبت به گروه شاهد بیشتر بود. این نتایج در خصوص تاثیر

پروتئین‌ها بر تعداد گلوبول‌های سفید در این نوع باکتری‌ها مطلوبی و انجام نشهد است، با این که نتایج شاهد به‌طور کلی احتمال است. (۱۷).
که تحریک سلول‌ی این افراد بهبودی فارمکولوژی گلوپل های سفید و کل تعداد ماکروفاژها و افزایش ویتامین خواری اهمیت این می‌باشد. بررسی داده‌های شورا (۱۶) نشان داد که ماکروفاژهای تیمار پروسپارکن نسبت به گروه فیزیکی بهتر نتایج به دست آمده از تحقیق حاضر با نتایج سایر محققین بر حسب عوامل سلول‌ی از قبیل فارمکولوژی گلوپل های سفید (۱۸) و فعالیت فیزیکی (۲۰) پیش می‌کرد.

نتایج بررسی‌های این نمونه از این بر حسب ویژگی‌های فیزیکی حاضر، نتایج مطالعات (۲۲) این نظریه را
تیمار معنی‌دار بوده و در تیمار ۶ و ۷ اختلاف معنی‌داری را با تیمار شاهد نشان داد، که تاثیر بر روی هایک در بهبود اکسیژن رسانی به بافت ها و فرآیند سوخت و ساز و انتقال 
CO۲ به بافت ها به بروز انحراف می‌باشد (۸). از آنجایی که هموگلوبین بروزتیتین است که ۹۵ درصد گلیبر فرمز را

نمونه‌رچ - مانگک نیترات هموگلوبین سرم خون در تیمارهای مختلف (درصد)

نمونه‌رچ - مانگک نیترات MCH سرم خون در تیمارهای مختلف (پگ/کر)
نمودار ۱- تغییرات میزان میکروکولر روده در نمادهای مختلف در هر دوره (درصد)

نمودار ۲- تغییرات نمادهای مختلف در هر دوره (درصد)

نمودار ۳- تغییرات عمومی سرم در نمادهای مختلف (درصد)
نمودار ۱- فاکتورهای خونی در بیوپسی مغزی و اسید فولیک

نمودار ۲- نمونه اسید فولیک در بیوپسی مغزی و اسید فولیک

نمودار ۳- فاکتورهای خونی در بیوپسی مغزی و اسید فولیک

(U/ml/min)
فعالیت ایزوژروم سرم به عنوان یک عامل مهم با اهمیت ایمیج غیراختصاصی در ماهی‌های یاپاس (25) و افراشی آن بر مصرف مواد محارب ایمیج ماده گلوکان حاصل از تحقیق آنتی‌اکسیدان‌های مایع (26) می‌باشد.

آزمایش ایزوژروم سرم در تیمار ۴ و ۴ فرابیش معمی داری را نسبت به شاهد داشته که می‌توان گفت آن این‌طور تفسیر کرد که ممکن است بیشترین مقدار تولید ایزوژروم از نرخ تولید و میزان مایع باشد. حال حاضر، قطع گرازه‌ای بر فعالیت ایزوژروم تأثیرگذاری می‌باشد (۲۴).

نتایج و قدردانی

بنده و سهیل بر خود از لری می‌دانم از همکاری صمیمانه پرسیل زحمت کش موسسه تحقیقات بین‌المللی ماهیان خاویاری دکتر دامانی به ویژه همگاران بخش تکثیر و پرورش آن مرکز در اجرای این تحقیق قدردانی نمایم.

۴-حسینی، فر، ج، مرکنا، ع، مجذایی، به، خوشابور، ح، بورانی، م، مرجانی، به، ۱۳۸۹ بررسی اثرات پروتئین سیسوس (Ellipsosoidus) متحرک Saccharomyces cerevisiae var ورود به قلب ماهی (Huso huso) در شیلات (26). ۱۴ صفحه. ایران. سال نوزدهم شماره ۵.

۵-سید، ح، مرکنا، ع، ۱۳۸۲ کتاب جامع تجهیزات و فرآورده‌های آزمایشگاهی انتشارات کتاب میر، ۱۴۸۷ صفحه.

۶-سمتیان، م، ۱۳۸۷ ایمیج شناسی ماهیان و سخت‌پوستان انتشارات فناگره تهران ۱۷۴ صفحه.

اختلاف معنی‌داری در بین انواع گل‌بچه‌های سفید (نرخ ایزوژروم، نرخ ایزوژروم، میزان ایزوژروم) در بین تیمارها در مقایسه با گروه شاهد مشاهده شد (۵). ماهیان غذایی شده با تیمارهای (۲) و (۳) افراشی معنی‌داری را نسبت به گروه‌های اختلال نظر تعداد میزان ۱۰ می‌باشد. معنی‌داری مشاهده شده با تیمارهای دندان، میزان ۱۰ می‌باشد. گزارش و نشان مهی را از ایمیج غیراختصاصی و پاپسی اندازه داده و این یافته‌ها نشان داد که نسبت به گزارش و نشان مهی برای نگاه‌کاری عاده ترین فعالیت نرخ تولید ها انجم عامل گویی‌زنوی فعال می‌باشد. (۸) ماهیان غذایی شده با تیمارهای ترکیبی پروتئین و اسید خویشک دارای تعداد بیشتر از نرخ تولید ها در مقایسه با تیمار شاهد بودند که این مقدار در تیمار ۵ بهتر از سایرین است. حداکثر میزان IgM ایمونوگلوبین کل (IgM) سرم خون مربوط به تیمار ۶ می‌باشد. طبق نتایج بدست‌آمده میزان نرخ ایزوژروم میان IgM ایمونوگلوبین کل IgM و ایمونوگلوبین IgM ایمونوگلوبین کل IgM و ایمونوگلوبین IgM تیمارها و شاهد اختلاف معنی‌دار آماری داشت. میزان

منابع

۱-اشاره‌ها، ع. پوررضا، ج، یانزاری، پ. س، کمالی، ع. ۱۳۸۳ معرفی مختلف بروز و چریبی بر شاخص های گروه و ترکیب چریب به سه ماهیان انگشت قد قیل ماهی. مجله علمی و فنون کشاورزی و مهندسی دانشگاه گرگان، سال هشتم شماره دوم، تابستان ۱۳۸۳ صفحات ۲۴۹-۲۵۲.

۲-افشار وژنری، ۱۳۸۳ راهنمای علمی تغذیه و نهاده های غذایی و دارویی آبی‌زیان در ایران، جلد سوم، تهران، جلد اول ۱۳۸۱.

۳-پوررضا، ع. پوررضا، ع. پوررضا، ع. ۱۳۸۲ بررسی پنج گونه ماهیان با درصد مختلف ظهور کسانی ره روش‌های مشاهده، مجله علمی شیلات ایران. وزه نامه اولین میکروبیوم ماهیان خازن‌باری، صفحات ۳۷-۴۸ تا ۹۳.


