تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,624 |
تعداد مشاهده مقاله | 78,435,241 |
تعداد دریافت فایل اصل مقاله | 55,455,824 |
Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation | ||
Computations and Simulations in Mechanical Science | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 شهریور 1398 | ||
نوع مقاله: Original Article | ||
نویسندگان | ||
Reza Pilafkan* ؛ Mahmood Kaffash Mirzarahimi | ||
Department of Mechanic Engineering,university of mohaghagh ardabili | ||
چکیده | ||
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions. It was revealed that nonlocal elasticity theory can extimate the biaxial buckling response of SLGSs with great accuracy using the proposed values for the nonlocal parameter. which is comparable to the results of MD simulation. This analysis showed that the importance of the small length scale is dependent on the boundary conditions of SLGS. | ||
کلیدواژهها | ||
Biaxial buckling؛ Single-layered graphene sheets؛ Nonlocal elasticity؛ Molecular dynamics simulation؛ Classical plate theory | ||
سایر فایل های مرتبط با مقاله
|
||
آمار تعداد مشاهده مقاله: 50 |