تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,372 |
تعداد دریافت فایل اصل مقاله | 55,444,936 |
Hardware Implementation of LIF and HH Spiking Neuronal Models | ||
Signal Processing and Renewable Energy | ||
مقاله 3، دوره 3، شماره 1، خرداد 2019، صفحه 35-42 اصل مقاله (482.04 K) | ||
نوع مقاله: Original Research Paper | ||
نویسندگان | ||
Pooya Soleimani Abhari؛ Farhad Razaghian* | ||
Electrical Engineering Department, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
چکیده | ||
This paper presents a hardware implementation of both Hodgkin-Huxley (HH) and Leaky Integrate and Fire (LIF) spiking neuronal models. FPGA is used as digital platform due to flexibility and reconfigureability. The proposed neural models are simulated by MatLab and the results are compared with the HDL software’s output in order to evaluate the design. Simple architecture uses two counters and a comparator used as the main part of leaky Integrate and Fire model. For the Hodgkin and Huxley model a Look Up Table based structure is utilized. Although it consumes large amount of area, it results more reasonable propagation delay time hence higher operating frequency. The proposed architectures are evaluated on Stratix III device using Quartus II simulator. Maximum operating frequency of 583 MHz (limited to 500 MHz due to the device port rate) and 76 MHz are achieved for the LIF and HH architectures respectively. | ||
کلیدواژهها | ||
Spiking neural network؛ LIF Model؛ HH Model؛ FPGA implementation | ||
آمار تعداد مشاهده مقاله: 282 تعداد دریافت فایل اصل مقاله: 725 |