تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,279 |
تعداد دریافت فایل اصل مقاله | 54,843,911 |
Fuzzy Farthest Points and Fuzzy Best Approximation Points in Fuzzy Normed Spaces | ||
Theory of Approximation and Applications | ||
مقاله 2، دوره 13، شماره 1، مرداد 2019، صفحه 11-25 اصل مقاله (302.28 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
Hamid Mazaheri Tehrani* 1؛ S. M Mouavi Shams Abad2؛ M. A Dehghan2؛ Z. Bizhanzadeh1 | ||
1Faculty of Mathematics, Yazd University, Yazd, Iran | ||
2Faculty of Mathematics, Vali-e-asr University of Rafsenjan, Rafsenjan, Iran | ||
چکیده | ||
In this paper we define fuzzy farthest points, fuzzy best approximation points and farthest orthogonality in fuzzy normed spaces and we will find some results. We prove some existence theorems, also we consider fuzzy Hilbert and show every nonempty closed and convex subset of a fuzzy Hilbert space has an unique fuzzy best approximation. It is well know that the conception of fuzzy sets, firstly defined by Zadeh in 1965. Fuzzy set theory provides us with a framework which is wider than that of classical set theory. Various mathematical structures, whose features emphasize the effects of ordered structure, can be developed on the theory. The theory of fuzzy sets has become an area of active research for the last forty years. On the other hand, the notion of fuzzyness has a wide application in many areas of science and engineering, chaos control, nonlinear dynamical systems, etc. In physics, for example, the fuzzy structure of space time is followed by the fat that in strong quantum gravity regime space time points are determined in a fuzzy manner. | ||
کلیدواژهها | ||
Normed fuzzy space؛ Fuzzy farthest orthogonality؛ Fuzzy best approximation points؛ Fuzzy farthest points | ||
مراجع | ||
[1]T. Bag and S.K. Samanta. Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math., 2003, 11(3), 687-705. [2]T. Bag and S.K. Samanta. xed point theorems on fuzzy normed linear spaces. Inform. Sci., 2003, 176, 2910-2931. [3]T. Bag and S.K. Samanta. Some xed point theorems in fuzzy normed linear spaces. Inform. Sci., 2007, 177, 3271-3289. [4]A. George and P. Veeramani. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 1994, 64(3), 395-399. 30 [5]M. Goudarzi and S. M. Vaezpour. On the denition of fuzzy Hilbert spaces and its application The Journal of Nonlinear Science and Applications, J. Nonlinear Sci. Appl., 2009, 2, 46-59. [6]M. A. Moghadam. Best proximity pairs in fuzzy metric spaces. Journal of Applied Sciences, 2012, 3, 1-4. [7]S. A. M. Mohsen Hosseini, H. Mazaheri, and M. A. Dehghan. Approximate xed point in fuzzy normed spaces for nonlinear maps. Iranian Journal of Fuzzy System, 2013, 10(1), 135-142. [8]R. Vasuki and P. Veeramani. Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 2003, 135(3), 415-417. [9]S. M. Vaezpour and F. Karimi. t-best approximation in fuzzy normed spaces. Iran. J. Fuzzy Syst., 2008, 5(2), 93-99. | ||
آمار تعداد مشاهده مقاله: 202 تعداد دریافت فایل اصل مقاله: 247 |