طراحی تقسیم کننده توان ویلکینسون نامتعادل توسعه خطوط ریزی‌ورز تزویج
شه� نامتقارن

مهدی مروییان (1) - سعید نصری (2) - مجید طریبی (3)

1) استادیار - دانشکده برق، دانشگاه آزاد اسلامی، واحد تبریز
2) مربی - دانشکده برق، دانشگاه آزاد اسلامی، واحد تبریز
3) استادیار - گروه مخابرات، دانشگاه علم و صنعت ایران

تاریخ دریافت: یازد 1390
تاریخ پذیرش: یازد 1389

خلاصه: در این مقاله روش جدیدی برای یک تجهیزه توانی توان ویلکینسون ریزی‌ورز نامتقارن با نسبت تقسیم بالا، بهره‌برداری کم خط ریزی‌ورزی مورد نیاز برای تحقق این تقسیم کننده توان مورد مراجعه قرار گرفته است. در روش پیشنهادی به جای استفاده از خطوط مجزای ریزی‌ورز در تقسیم کننده توان ویلکینسون، از خطوط تزویج شده نامتقارن ریزی‌ورز استفاده می‌شود. نتایج بررسی‌های شبیه‌سازی حاکی از این حقيقة است که در تقسیم کننده توان ویلکینسون پیشنهادی، دامنه و ولتاژ مربوط به مولتی نسبت به دامنه و ولتاژ مربوط به مولتی در تقسیم کننده توان ویلکینسون بر اساس این طرح‌های تزویج شده نامتقارن به‌طور تقریبی برابر با مولتی خواهد بود.

کلمات کلیدی: تقسیم کننده ویلکینسون، خطوط ریزی‌ورز، خطوط تزویج شده ریزی‌ورز نامتقارن، HFSS

1 - مقدمه

تقسیم کننده توان ویلکینسون به خاطر مزایای منحصر به فرد آن مانند سامانه‌های ایجاد شبکه‌ها، بعنوان مورد استفاده از آن می‌توان به نظریهٔ انتخابی اینکه می‌کرده‌ای بالاتر شده و شروع دهنده‌های فاز اشاره نمود. بر خلاف تقسیم کننده بدون تقویت‌شوا، تقسیم کننده توان ویلکینسون دارای علاوه بر ایجاد تطبیق در تمامی دهانه‌ها، جالب‌تر است که از فرآیند خروجی را نیز ایجاد نماید.

روشهای هوشمند در صنعت برق - سال سوم - شماره تابستان - 1391

(57)
2) ساعتار پیشنهادی و خواص آن
شکل (1) یک تقسمیک کندسه توان ویلکنسون ریزخور توزیع با هم‌سایه یا تامگذاری ابتدای نشان می‌دهد. روی پریمای این تقسمیک کندسه توان ویلکنسون به‌نحوی بیشتری ایجاد می‌شود.

Fig. 1: Conventional Wilkinson power divider including its parameters

Table (1): Dimensions of the conventional Wilkinson power divider

<p>| جدول (1): گام‌های پریمای بیشتری این تقسمیک کندسه توان ویلکنسون |</p>
<table>
<thead>
<tr>
<th>W₁</th>
<th>W₂</th>
<th>L₁</th>
<th>L₂</th>
<th>W'</th>
<th>L'</th>
<th>W''</th>
<th>L''</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>4.5</td>
<td>44.5</td>
<td>40.5</td>
<td>1.62</td>
<td>42</td>
<td>5.3</td>
<td>40</td>
</tr>
</tbody>
</table>
شکل (2): مقسم توآن ویلکینسون پیشنهادی به همراه نانوگاندری اعمال فیزیکی آن

Fig. 2: Proposed Wilkinson power divider including its parameters

شکل (3): مدل مقسم توآن ویلکینسون پیشنهادی به همراه نانوگاندری باربرشته آن

Fig. 3: Model of the proposed Wilkinson power divider

امواج رفت A_1 و A_2 نوشته، بنابراین خواصی داشت:

$$V_1(z) = A_1 \left(e^{-\gamma z} + \Gamma_{L1} e^{\gamma z} \right) +$$
$$A_2 \left(e^{-\gamma z} + \Gamma_{L2} e^{\gamma z} \right)$$

$$V_2(z) = A_1 R_x \left(e^{-\gamma z} + \Gamma_{L1} e^{\gamma z} \right) +$$
$$A_2 R_x \left(e^{-\gamma z} + \Gamma_{L2} e^{\gamma z} \right)$$

در این رابطه Γ_{L1} و Γ_{L2} ضریب انگکاسه‌های مربوط به مودهای e^γ و $e^{-\gamma}$ انتقال خط انتقال توزیع شده نامتناکار است.

اعمال ولتاژ پیک ولتاژ به ابتدای خط انتقال توزیع شده نامتناکار، استفاده از رابطه (3) و اعمال شرط مزی در $Z=0$ نتیجه می‌دهد:

$$\begin{align}
A_1 \left(e^{-\gamma z} + \Gamma_{L1} e^{\gamma z} \right) + \\
A_2 \left(e^{-\gamma z} + \Gamma_{L2} e^{\gamma z} \right) &= 1 \\
A_1 R_x \left(e^{-\gamma z} + \Gamma_{L1} e^{\gamma z} \right) + \\
A_2 R_x \left(e^{-\gamma z} + \Gamma_{L2} e^{\gamma z} \right) &= 1
\end{align}$$
با حل معادله بالا بر حسب
\[
A_1 = \frac{R_x(1 + \Gamma_{Lx}^n)(1 + \Gamma_{Lx}^r)}{R_x(1 + \Gamma_{Lx}^n) - (1 + \Gamma_{Lx}^r)}
\]
\[
A_2 = \frac{R_x(1 + \Gamma_{Lx}^n)}{R_x(1 + \Gamma_{Lx}^n) - (1 + \Gamma_{Lx}^r)}
\]

شکل (4): بررسی درصد خط انقلاب ریزونار نامتقابل شده

Table (2): Various parameters of asymmetrical coupled line including the normalized amplitudes of the forward propagating voltages along the line

<table>
<thead>
<tr>
<th>(w_1)</th>
<th>(s)</th>
<th>(Z_{q1})</th>
<th>(Z_{q2})</th>
<th>(Z_{q3})</th>
<th>(\beta)</th>
<th>(\beta)</th>
<th>(R_c)</th>
<th>(R_x)</th>
<th>(A_1)</th>
<th>(A_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>131</td>
<td>39.6</td>
<td>20</td>
<td>39.6</td>
<td>34.7</td>
<td>1.1</td>
<td>-0.26</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>140</td>
<td>39.9</td>
<td>58</td>
<td>16.5</td>
<td>39.5</td>
<td>34.3</td>
<td>1.14</td>
<td>-0.26</td>
<td>0.76</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>102</td>
<td>39.9</td>
<td>56</td>
<td>21.7</td>
<td>39.7</td>
<td>35</td>
<td>1.12</td>
<td>-0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>(w_2 = 5)</td>
<td>1</td>
<td>0.5</td>
<td>133</td>
<td>36.7</td>
<td>67</td>
<td>18.5</td>
<td>39.7</td>
<td>34.7</td>
<td>1.15</td>
<td>-0.24</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>142</td>
<td>37</td>
<td>58.4</td>
<td>15.3</td>
<td>39.7</td>
<td>34.3</td>
<td>1.11</td>
<td>-0.23</td>
<td>0.77</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>103</td>
<td>37</td>
<td>56</td>
<td>21.7</td>
<td>39.9</td>
<td>35</td>
<td>1.14</td>
<td>-0.31</td>
<td>0.79</td>
</tr>
<tr>
<td>(w_3 = 5.5)</td>
<td>1</td>
<td>0.5</td>
<td>130</td>
<td>42.7</td>
<td>66</td>
<td>22</td>
<td>39.4</td>
<td>34.7</td>
<td>1.13</td>
<td>-0.29</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>138</td>
<td>43</td>
<td>57.2</td>
<td>18</td>
<td>39.3</td>
<td>34.2</td>
<td>1.11</td>
<td>-0.28</td>
<td>0.75</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>101</td>
<td>43</td>
<td>55</td>
<td>23.5</td>
<td>39.5</td>
<td>35</td>
<td>1.11</td>
<td>-0.39</td>
<td>0.78</td>
</tr>
<tr>
<td>(w_4 = 4.5)</td>
<td>1</td>
<td>0.5</td>
<td>128</td>
<td>46.6</td>
<td>65</td>
<td>24</td>
<td>39.2</td>
<td>34.6</td>
<td>1.11</td>
<td>-0.32</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>136</td>
<td>47</td>
<td>56.4</td>
<td>19.6</td>
<td>39.2</td>
<td>34.2</td>
<td>1.08</td>
<td>-0.32</td>
<td>0.75</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>100</td>
<td>47</td>
<td>54.4</td>
<td>26</td>
<td>39.4</td>
<td>34.9</td>
<td>1.1</td>
<td>-0.43</td>
<td>0.78</td>
</tr>
</tbody>
</table>

روش‌های هوشتند در صنعت برق - سال سوم - شماره نهم - پاییز ۱۳۹۱

Journal of Intelligent Procedures in Electrical Technology - Vol. 3 - No. 9 - Spring 2012
در اکثریت (5) تا (7) به منظور پایان بررسی اولیه بزرگسپس با
پیشنهادی پارامترهای خط توزیع شده نامتقاضی (W₁, W₂, S, L) به منظور
طراحی استفاده نمود اما در این مورد به علت در نظر گرفتن اثر مود
بهرمانی تقسیم کننده را به م دقیق مورد نظر طراحی می‌رسانیم.

اگرچه می‌توان از گرافهای نشان داده شده در اکثریت (5) تا (7) به منظور
طراحی استفاده نمود اما در این مورد به علت در نظر گرفتن اثر
مود
عمداً مقادیر تقسیم کننده نسبت به م دقیق مورد نظر طراحی کمی متفاوت
خواهد بود. با توجه به این مسئله، می‌توان از گرافهای نشان داده شده

Fig. 5: Variation of the c-mode characteristic impedances versus S and W₁ for W₂=5mm

Fig. 6: Variation of the c-mode characteristic impedances versus S and W₁ for W₂=4mm
راه‌های هوشتند در صنعت برق - سال سوم - شماره نهم - پایور 1391

\[W_2 = 3 \text{mm} \]

شکل (7): تغییرات امیدان مشخصه مود c بر حسب \(W_1 \) و \(s \) برای \(W_2 = 3 \text{mm} \)

3- روش طراحی

ولین فرم برای تیل به این‌های شکل حاصل کنند که یک عدد انتخاب مشخصه را به این‌های تکرار کنند و با توجه به این‌های انتخابی روش که برای مید و سیمی برای مصوبه در مقاومت‌های دیگر روبروی به صورت بالا و بالا انتخاب شده است.

\[I_1(z = 0) = \frac{\Delta_{Z_1}}{Z_{\infty}} (1 - \Gamma_{z1}^+ + 1 - \Gamma_{z1}^-) \]

\[I_2(z = 0) = \frac{\Delta_{Z_2}}{Z_{\infty}} (1 - \Gamma_{z2}^+ + 1 - \Gamma_{z2}^-) \]

در این رابطه \(Z_{\infty} \) و \(Z_{Z1} \) و \(Z_{Z2} \) و \(\Gamma_{z1} \) و \(\Gamma_{z2} \) و \(\Delta_{Z1} \) و \(\Delta_{Z2} \) ریزی شده، طبیعی باید راه‌حلهای انتخابی که برای مید و سیمی برای مصوبه در مقاومت‌های دیگر روبروی به صورت بالا و بالا انتخاب شده است.

\[e = \left(I_1 + I_2 \right) - \frac{1}{Z_0} \left[V(L) - V_1(L) \right] + \beta \left| Y_{12} \right| \]

8- نتایج طراحی

در راه‌های هوشتند در صنعت برق - سال سوم - شماره نهم - پایور 1391

\[Y_{zz} = -\frac{(C + D)(C + F)}{B} + \alpha \]

\[B = -\frac{Y_{zz} \coth \gamma L}{R_z (1 - R_z / R_s)} - \frac{Y_{zz} \coth \gamma L}{R_z (1 - R_z / R_s)} \]

\[C = \frac{Y_{zz} \coth \gamma L}{(R_z - R_s) \sinh \gamma L} + \frac{Y_{zz} \coth \gamma L}{(R_z - R_s) \sinh \gamma L} \]

\[D = \frac{Y_{zz} \coth \gamma L}{1 - R_z / R_s} \sinh \gamma L - \frac{Y_{zz} \coth \gamma L}{1 - R_z / R_s} \sinh \gamma L \]

\[F = \frac{R_s Y_{zz}}{R_s (1 - R_z / R_s) \sinh \gamma L} - \frac{R_s Y_{zz}}{R_s (1 - R_z / R_s) \sinh \gamma L} \]
شده این مقاله علومیهای ریز حضور می‌گردد. یک طرح از نظر اولیه و نهایی آنها یکسان است.

با توجه به این اساس، نتایج در جدول (1) و (2) بهبود می‌دهد.

جدول (2): ابعاد اولیه و نهایی مراحل توان ویکسون پیشنهاد

| Table (3): The initial and final dimensions of the proposed Wilkinson power divider |
|-----------------|-----------------|-----------------|---------------|---------------|---------------|---------------|
| W_1 | W_2 | S | L | W' | L' | W'' | L'' |
| Initial Values | 0.9 | 5 | 0.3 | 40 | 1.62 | 42 | 5.3 | 40 |
| Final Values | 0.59 | 5 | 0.3 | 42.8 | 1.62 | 42 | 5.3 | 40 |

![Fig. 8: Simulated scattering parameters of the conventional (dotted line) and Proposed (solid line) Wilkinson power divider](image)

cال‌پلاستیک و رادیو نیم‌ماتنت، انجام پذیرفته نهایی مراحل توان ویکسون پیشنهادی را می‌تواند بیان کند، با توجه به شکل، تغییرات تکنیکی نهایی مراحل توان ویکسون می‌تواند در دهانه‌های خروجی به‌طور مستقیم به این اکسیشان و جداسازی بین دهانه‌های جداسازی و جداسازی بین دهانه‌های خروجی با درجه دکتری بان‌دیش شده. بنابراین با توجه به شکل، میزان جداسازی بین دهانه‌های خروجی و تغییرات تکنیکی نهایی مراحل توان می‌تواند با توجه به شکل، تغییرات تکنیکی نهایی مراحل توان ویکسون پیشنهادی است.

5- نتیجه‌گیری

این مقاله حاضر می‌گردد که توان ویکسون نامناسب با نسبت توان بالا میداند. در روشهای پیشنهادی به جای استفاده از خطوط زیرک (که دستیابی به آن می‌تواند به آسانی شواین استفاده باشد) از خطوط زیرک (که دستیابی به آسانی شواین استفاده شده) استفاده شده است.

امکانات استفاده از روشهای پیشنهادی با توجه به شکل که در منابع استفاده شده است، کاربرد پیشنهادی بیشتری دارد.

1- Microwave
2- Transmission Line Electromagnetic Modeling Tool

(53)
مراجع

ضمنیم:

به منظور به دست آوردن مقاومن R مورد نیاز بین دهانه‌های دور و در نهایت مجزا نمودن این دو دهانه، نیاز به ادمپتاس متقابل بین این دهانه است. برای این هدف دهانه ورودی تقسیم کننده توان را به بار تطبیق مستقیم نموده و از انتهای دیگر خط ادمپتاس را به دست می‌آوریم. بنابراین شکل مانند آنچه که در شکل (1-الف) نشان داده شده است با بازویی داشته، ماتریس ادمپتاس خط توزیع شده نامتقاون در حالتی که چهار دهانه ازد و باشد به صورت دیل قابل بیان است [11].

شکل (1) الگویی از مدل تقسیم کننده توان ویکینسون در حالتی که دهانه ورودی آن به بار تطبیق متصال شده است
با توجه به رابطه (A-1) \(\frac{Y_{11} = \frac{Y_{11}}{1-R_x/R_s}}{1 - R_x/R_s} = A \)

\(Y_{13} = Y_{32} = Y_{41} = Y_{42} = \frac{Y_{11}}{(1-R_x/R_s)} - \frac{Y_{11}}{(1-R_x/R_s)} = B \)

\(Y_{14} = Y_{23} = Y_{32} = \frac{Y_{11}}{(R_x-R_s) \sinh \gamma_1} + \frac{Y_{11}}{(R_x-R_s) \sinh \gamma_1} = C \)

\(Y_{22} = \frac{-Y_{11}}{(1-R_x/R_s) \sinh \gamma_1} - \frac{Y_{11}}{(1-R_x/R_s) \sinh \gamma_1} = D \)

\(Y_{33} = Y_{32} = \frac{R_x Y_{32}}{(1-R_x/R_s)} - \frac{R_x Y_{32}}{(1-R_x/R_s)} = E \)

\(Y_{34} = Y_{43} = \frac{R_x Y_{43}}{(R_x-R_s) \sinh \gamma_1} + \frac{R_x Y_{43}}{(R_x-R_s) \sinh \gamma_1} = F \)

با توجه به شکل 1-الف، در دهانه ورودی خواهیم داشت

\(I_1 = A V_i + D V_2 + B V_3 + C V_4 \)

\(I_2 = B V_i + A V_2 + C V_3 + B V_4 \)

\(I_3 = B V_i + C V_2 + E V_3 + F V_4 \)

\(I_4 = C V_i + B V_2 + F V_3 + E V_4 \)

\(V_i = V_o = V \)

\(I_i + I_s = -V Y_o \)

(\(A - 2 \))

\(\Rightarrow V[A + 2B + E + Y_o] = -[D + C] V_2 - [C + F] V_4 \)

(\(A - 3 \))

با توجه به رابطه (A-4) خواهیم داشت

\(V = \frac{[D + C]}{\Delta} V_2 - \frac{[C + F]}{\Delta} V_4 \)

(\(A - 5 \))

با جایگذاری رابطه (A-5) در رابطه (A-3) و پس از انجام کمی عملیات جبری خواهیم داشت:

\[I_2 = V_3 \left[\frac{-(D+C)(C+D)}{\Delta} + A \right] + V_4 \left[\frac{-(F+C)(C+D)}{\Delta} + B \right] \]

\[I_3 = V_4 \left[\frac{-(D+C)(C+D)}{\Delta} + B \right] + V_4 \left[\frac{-(F+C)(C+D)}{\Delta} + E \right] \]

(\(A - 6 \))

با توجه به رابطه بالا، اندیس متغیر بین دهانه‌های خروجی به صورت ذیل خواهیم پیدا کرد

\(Y_{33} = \frac{(C+D)(C+E)}{\Delta} + B \)

(\(A - 7 \))