تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,148 |
تعداد دریافت فایل اصل مقاله | 54,843,811 |
Structure and isomeric studies of 1,3-diaryl-H-benzo[f]chromene, catalyst effect or thermodynamic stability? An ab initio study | ||
Iranian Journal of Catalysis | ||
مقاله 3، دوره 3، شماره 3، آذر 2013، صفحه 139-147 اصل مقاله (683.76 K) | ||
نویسندگان | ||
Mohammad Vakili* 1؛ Hossein Eshghi1؛ Maesam Raeisian1؛ Raheleh Afzali1؛ Ali Reza Berenji1؛ Hadi Behzadi2 | ||
1Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran. | ||
2Department of Chemistry, Kharazmi University, Mofatteh Avenue, Tehran, Iran. | ||
چکیده | ||
Two possible isomers of some 1,3-diaryl-H-benzo[f]chromene have been studied using density functional theory. Structures of E1 and E2 isomers were optimized at the B3LYP and MP2 levels with different basis sets. The total electronic energies show that E2 isomer is about 3-5 kcal/mol more stable than E1 isomer and this energy difference is attributed to the planarity of heterocyclic ring and more establishment resonance in E2 isomer, that is confirmed by second order interaction energies E(2) of NBO results. The calculated geometry for both chromene isomers were also compared with the experimental data. The X-ray data indicate the E1 isomer as the stable structure for 1,3-diaryl-1H-benzo[f]chromene, while the E2 isomer is fixed for 3-phenyl-1-p-tolyl-1H-benzo[f]chromene. The compared dihedral angles of both isomers show that phenyl (I) group in E2 isomer has more contribution in resonance with the heterocyclic and naphthalene rings than that in E1, while in E1 isomer phenyl (II) group is more engaged in resonance than that in E2. | ||
کلیدواژهها | ||
1,3-Diaryl-H-benzo[f]chromene؛ 3-Phenyl-1-p-tolyl-1H-benzo[f]chromene؛ DFT, NMR؛ Isomerization analysis | ||
مراجع | ||
[1] P.J. Coelho, L.M. Carvalho, S. Abrantes, M.M. Oliveira, M.F. Oliveira-Campos, A. Samat, R. Guglielmetti. Tetrahedron 58 (2002) 9505-9511. [2] N.M.F.S.A. Cerqueira, L.M. Rodrigues, A.M.F. Oliveira-Campos, L.H. Melo de Carvalho, P.J. Coelho, R. Dubest, J. Aubard, A. Samat, R. Guglielmetti, Helv. Chim. Acta 86 (2003) 3244-3253. [3] G.R. Geen, J.M. Evans, A.K. Vong, A.R. Katritzky, C.W. Rees, E.F.V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry II; Pergamon press, Oxford, UK (1996); Vol. 5, pp 469–500. [4] J.L. Pozzo, A. Samat, R. Guglielmetti, V. Lokshin, V. Minkin, Can. J. Chem. 74 (1996) 1649-1659. [5] L.V. Kirchhoff, G.L. Mandell, R.G. Douglas, J.E Bennett. Principles and practice of infectious diseases, 7th Ed (1990) pp 2077-2084. [6] C.D. Gabbutt, B.M. Heron, A.C. Instone, D.A. Thomas, S.M. Partington, M.B. Hursthouse, T. Gelbrich, Eur. J. Org. Chem. 60 (2003) 1220-230. [7] H. Toshimitsu, T.S. Forrest, L. Kuo-Hsiung, J. Med. Chem. 30 (1987) 2005-2008. [8] S. Claessens, B. Kesteleyn, T.N. Van, N.D. Kimpe, Tetrahedron 62 (2006) 8419-8424. [9] M. Kidwai, S. Saxena, M.K.R. Khan, S.S. Thukral, Bioorg. Med. Chem. Lett. 15 (2005) 4295-4298. [10] C.P. Dell, Curr. Med. Chem. 5 (1998) 179-194. [11] J.S. Yadav, B.V. Subba Reddy, S.R. Biswas, S. Sengupta, Tetrahedron Lett. 50 (2009) 5798-5801. [12] X. Xu, J. Liu, L. Liang, H. Li, Y. Li, Adv. Synth. Catal. 351 (2009) 2599-2604. [13] H. Eshghi, G.H. Zohouri, S. Damavandi, M. Vakili, Chin. Chem. Lett. 21 (2010) 1423-1426. [14] Y.W. Dong, G.W. Wang, L. Wang, Tetrahedron 64 (2008) 10148-10154. [15] X.S. Wang, C.W. Zheng, S.L. Zhao, Tetrahedron Asymm. 19 (2008) 2699-2704. [16] M.W. Xue, Acta Cryst. (2011). E67, o1668. [17] Gaussian 03, Revision B.0M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J. M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople. Gaussian Inc., Pittsburgh, PA, 2003. [18] C. Lee, W. Yang, R.G. Par, Phys. Rev. B. 37(1988) 785-789. [19] C. Moller, M.S. Plesset, Phys. Rev. 46 (1934) 618-622. [20] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899-926. [21] J.L. Dodds, R. McWeeny, A. J. Sadlej, Mol. Phys. 41 (1980) 1419-1430. [22] R. McWeeny, Phys. Rev. 126 (1962) 1028-1034. | ||
آمار تعداد مشاهده مقاله: 1,556 تعداد دریافت فایل اصل مقاله: 786 |