تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,625 |
تعداد مشاهده مقاله | 78,445,734 |
تعداد دریافت فایل اصل مقاله | 55,463,622 |
Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach | ||
Iranian Journal of Catalysis | ||
مقاله 11، دوره 4، شماره 3، آذر 2014، صفحه 205-211 اصل مقاله (284.85 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Mina Ghiasi* 1؛ Nahal Majdoddin2؛ Ebrahim Esalati3 | ||
1Department of chemistry, Faculty of science, Alzahra University, 19835-389, Vanak, Tehran, Iran. | ||
25th floor, Tehran Province Gas Company, No. 701, 15946-53415, Valiasr St, above Valiasr Sq., Tehran, Iran. | ||
33rd floor, Gas 6th Building, 15988-66515, Amani Ave., Gharani St., Tehran, Iran. | ||
چکیده | ||
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of active and inactive forms of γ-CA enzyme active center, and complex between γ-CA and carbon dioxide. The catalytic mechanism involved the nucleophilic attack of cobalt bound hydroxide ion to CO2. In the following, the five coordinate cobalt complex as a transition state is formed and then the produced bicarbonate is displaced by a water molecule and give cobalt bound hydroxide for the next turn of catalysis. The activation energy barrier for this mechanism is about 7.9 kcal/mol. | ||
کلیدواژهها | ||
Carbon dioxide؛ γ-Carbonic anhydrase؛ density functional theory؛ Catalyst؛ Co2+ | ||
مراجع | ||
[1] C.T. Supuran, A. Scozzafava, Expert Opin. Ther. Pat. 12 (2002) 217-242. [2] C.T. Supuran, A. Scozzafava, Curr. Med. Chem. Imm. Endoc. Metab. Agents 1 (2001) 61-97. [3] C.T. Supuran, A. Scozzafava, Expert Opin. Ther. Pat. 10 (2000) 575-600. [4] S.A. Zimmerman, J.G. Ferry, Curr. Pharm. Des. 14 (2008) 716-721. [5] C.T. Supuran, Bioorg. Med. Chem. Lett. 20 (2010) 3467-3474. [6] A.J. Esbaugh, B.L. Tufts, Respir. Physiol. Neurobiol. 154 (2006) 185-198. [7] S. Lindskog, Biochim. Biophys. Acta 39 (1960) 218-226. [8] P.O. Nyman, Biochim. Biophys. Acta 52 (1961) 1-12. [9] S. Lindskog, B.G. Malmstrom, J. Biol. Chem. 237 (1962) 1129-1124. [10] G. Laurent, M. Charrel, F. Luccioni, M.F. Autran, Y. Derrien, Bull. Soc. Chim. Biol. 47 (1965) 1101-1124. [11] G. Laurent, C. Marrioq, D. Nahon, M. Charrel, Y. Derrien, Compt. Rend. Soc. Biol. 156 (1962) 1456-1461. [12] E.E. Rickli, S.A.S. Ghazanfar, B.H. Gibbons, J.T. Edsall, J. Biol. Chem. 239 (1964) 1065-1078. [13] J.C. Kernohan, Biochim. Biophys. Acta 81 (1964) 346-356. [14] J.C. Kernohan, Biochim. Biophys. Acta 96 (1965) 304-317. [15] B. Tilander, B. Strandberg, K. Fridborg, J. Mol. Biol. 12 (1965) 740-760. [16] J.E. Coleman, Biochemistry 4 (1965) 2644-2655. [17] T.A. Duff, J.E. Coleman, Biochemistry 5 (1966) 2009-2019. [18] J.B. Foresman, A. Frisch, Exploring chemistry with electronic structure methods, Gaussian Inc. Pittsburg, PA., 1996, pp. 3-9. [19] R.G. Parr, W. Yang, Density-functional theory of atoms and molecules, Oxford Univ. Press, 1989. [20] S.A. Zimmerman, J.G. Ferry, C. T. Supuran, Curr. Top. Med. Chem. 7 (2007) 901-908. [21] S. Lindskog, L.E. Henderson, K.K. Kannan, A. Liljas, P.O. Nyman, B. Trandberg, Carbonic anhydrase in the enzymes. Academic press, New York, 1971, pp. 587-665. [22] Y. Pocker, S. Sarkanen, Adv. Enzymol. Relat. Areas Mol. Biol. 47 (1978) 149-274. [23] W.S. Sly, P.Y. Hu, Annu. Rev. Biochem. 64 (1995) 375-401. [24] C.T. Supuran, A. Scozzafava, A. Cassini, Med. Res. Rev. 23 (2003) 146-189. [25] S. Pastorekova, S. Parkkila, J. Pastorek, C.T. Supuran, J. Enzyme Inhib. Med. Chem. 19 (2004) 199-229. [26] C.T. Supuran, Rev. Roum. Chim. 37 (1992) 411-421. | ||
آمار تعداد مشاهده مقاله: 1,527 تعداد دریافت فایل اصل مقاله: 711 |