

Journal of Computer Engineering 1 (2009) 31-46

29

Transforming Fuzzy State Diagram to Fuzzy Petri net

H. Motameni
Department of Computer Engineering
Islamic Azad University, Sari Branch,

Sari, Iran
E-mail: Motameni@iausari.ac.ir

I. Daneshfar
Department of Computer Engineering

University of Science and Technology of Mazandaran
Babol, Iran

E-mail:Dopofa@yahoo.com

J .Bakhshi
Department of Computer Engineering

University of Science and Technology of Mazandaran
Babol, Iran

E-mail:javadbakhshi@yahoo.com

H. Nematzadeh
Department of Computer Science & Information System,

University Technology Malaysia
E-mail:javadbakhshi@yahoo.com

Abstract
UML is known as one of the most common methods in software engineering.

Since this language is semi-formal, many researches and efforts have been
performed to transform this language into formal methods including Petri nets.
Thus, the operation of verification and validation of the qualitative and non-
functional parameters could be achieved with more ability. Since the majority of the
real world information is uncertain, therefore fuzzy UML diagram has been
extensively used by system analyzers. This paper is an attempt to transform state
diagrams created in fuzzy UML into fuzzy Petri net, so that the verification and
performance evaluation operation could be performed formally, rather than exact
visual analysis.

Keywords: Software engineering, Fuzzy UML, Fuzzy Petri net, Fuzzy state diagrams.

1. Introduction

The Unified Modeling Language (UML) diagrams are extensively used in software
design. However, the semi-formal characteristic of this method is a limitation for
verification operations and predicting non-functional parameters of the software,
especially in the first cycle of the software production. This problem is more critical for
control, critical, reactive and real time systems. On the other hand, since the majority of
the real world information is uncertain, therefore fuzzy UML diagrams have been
extensively used by system analyzers. Several researches have been performed to tackle
with the semi-formal problem of UML. Some of these researches have only used a
transformation algorithm, which transforms the created UML model into a Petri net as a
mathematical and formal model that, in turn, contains the visual aspect of modeling and
pursues the verification operations with further ability [1, 2, 3, 4, 5, 6, 7, 8]. Some of the
researches in this field besides representing a transformation algorithm (or without
representing an algorithm and only by using the available Algorithm); evaluate the
capability of the non-operational parameters and commonly qualitative parameters on
the obtained Petri nets of the UML model created [9, 10, 11, 12]. It is obvious that the
lack of this important ability in UML models remains the needs of the costumer and the

Transforming Fuzzy State… H.motameni et al.

30

market unsatisfied. So, this is the reason that makes this type of researches important. In
our previous researches [13, 14, 15, 16, 17] besides of studying and presenting
transformational patterns for some kinds of usual UML diagrams, especially state
diagrams and activity diagrams, we presented methods for evaluating some qualitative
parameters. In this paper, due to the growing process of using UML diagrams in fuzzy
model, we centralized on this kind of diagrams and with the significant Ability of Petri
nets in semi-formal UML model formalization we present a pattern to transform fuzzy
state diagrams to fuzzy Petri nets. First, we introduce fuzzy state diagrams briefly.
Then, we describe the transform algorithm. At the end, as a case study, we will study
the usage of this model for a weather forecasting system.

2. Fuzzy UML

UML is known as one of the most important tools in extending object oriented
systems. This language makes visual modeling possible so that the system developers
will be able to standardlize and make understandable the ideas and establish a more
effective mechanism in relations with other patterns [18, 19]. In a proposed general
pattern since the real world information is mostly uncertain, in many cases these types
of information cannot be modeled by UML. Recently a model named fuzzy UML, has
been introduced [20,21,22] which has the UML characteristics, and is also able to
model uncertain concepts.

2.1. Fuzzy state diagrams

State diagrams, models different states of an object. This diagram is mostly used to
show the dynamic behaviors of a system. Figure 1 shows an example of a state diagram.

Figure 1. An example of a state diagram

A state diagram is formed of five sections which are :
 1- Start state
 2- Different states of an object life cycle
 3- Events
 4- Guard conditions
 5- End state

As shown in Figure1, the start state is displayed with a symbol which refers

to an initial state of an object in its life cycle. The end state is displayed with a
symbol which refers to the end state in this cycle. In a state diagram there is only one
start state, whereas, the end state can be omitted or there can be several end states.

In a state diagram each state is displayed by a rectangle which shows the different
states of an object in its life cycle.

Journal of Computer Engineering 1 (2009) 29-44

31

 An event transforms the object from one state to another. Guard condition which is
binded in brackets, controls the occurrence of a transition.

According to these explanations, a fuzzy state diagram is a graphical model in fuzzy
UML which shows the different states of a fuzzy object in its real world life cycle.

This diagram uses fuzzy rules for transforming the state of an object to another state.
A fuzzy rule is shown as below

 <on event list <event threshold>>
 if condition list <EC coupling>
 Then action

Fuzzy rules are used to show the real world rules for an object in which these rules
can be active or deductive. As an example, the above mentioned rule is an active one. If
the on part is omitted, then it becomes a deductive rule. If in the on part, the threshold
is omitted in active rules, the threshold is assumed to be an exact matching with a
value of 1.

Each section of the state diagram can be transformed to a fuzzy state diagram. Table1
shows these transformations, clearly.

Table 1. Transformation of a state diagram into its fuzzy state

3. Fuzzy Petri nets

We introduce the following fuzzy Petri net (FPN) [26] structure to model the fuzzy
rules:

(P,Ps,Pe,T,TF,TRTF,A,I,O,TT,TTF,AEF,PR,PPM,TV), where

(I) P is a finite set of fuzzy places. Each place has a property associated with it, in which
• pps ⊂ is a finite set of input places for primitive events.
• ppe ⊂ is a finite set of output places for actions or conclusions.

(II) T is a finite set of fuzzy transitions. They use the values provided by input places
and produce values for output places.

(III) TF is a finite set of transition functions, which perform activities of fuzzy
inference.

(IV) TFT:TRTF → is transition type function, mapping each transition ∈T to a transition
function ∈TF.

(V) ()PTTPA ××⊆  Is a finite set of arcs for connections between places and
transitions. Connections Between the input places and transitions (P ×T) and

Fuzzy state Diagram State Diagram

Action of rule state
[Fuzzy condition] [condition]
Fuzzy Event Event

Transforming Fuzzy State… H.motameni et al.

32

connections between the transitions and output places (T × P) are provided by arcs.
In that:

• TPI →: is an input mapping.
• PTO →: is an output mapping.

(VI) TT is a finite set of fuzzy token (color) types. Each token has a linguistic value
(i.e., low, medium and high), which is defined with a membership function.

(vii) PTO →: Is token type function, mapping each fuzzy place ∈P to a fuzzy token
type ∈TT. A token in a place is characterized by the property of the place and a
level to which it possesses that property.

(VIII) →ArcAEF : Expression, is arc expression function mapping each arc to an
expression, which carries the information (token values).

(IX) PR is a finite set of propositions, corresponding to either events or conditions or
actions/conclusions.

(X) PRPPPM →: , is a fuzzy place to proposition mapping, where| PR| = |P|.
(XI)]1,0[: →PTV is truth values of tokens (µi) assigned to places. It holds the degree of

membership of a token to a particular place.

A token value in place pi ∈ P is denoted by TV (pi) ∈ [0, 1]. If TV (pi) = µi, µi ∈ [0,
1] and PPM (pi) = di. This states that the degree of the truth of proposition di is ∈µi. A
transition ti is enabled if ∀ pi ∈ I (ti), µi > 0. If this transition ti is fired, tokens are
removed from input places I (ti) and a token is deposited onto each of the output places
O (ti). Since we provide parameter passing, the token value of an output place pk ∈ O
(ti) is calculated from that of the input places I (ti) using the transition function TFi,
where TFi = TRTF (ti). This token’s membership value to the place pk, (i.e., µk = TV
(pk)), is part of the token and gets calculated within the transition function TFi, where µk
= TFi (I (ti)).

4. Transformation algorithm

Before studying the meaning of transformation Algorithm it is necessary to introduce
the meaning of scenario. Scenario is a parameter that can divide the rules. Only one of
the states of this parameter can be active at a time. The substitution of the scenario is
specified by the user. In the fuzzy deduction cycle of the strength of event e for rule r in
scenario s is calculated with formula [26]

))(()(),,(cefs evaluersreStrength µµ ∗= (1)

Which uses scalar multiplication. Where value (ec) is the value of the event (fuzzy or
crisp) occurred, µef is the membership function of the fuzzy event ef and µs(r) is the
similarity of the rule r to the current scenario s. The formula of µs(r) is defined as
])/*))),((max),,((([min(maxmax)(maxRLVRLVCCAAr rsrsrss µµµ = (2)

Where As ∈ S, ∀ Ar ∈ Ri, Cs ∈ S, ∀ Cr ∈ Ri, RLVrs, RLVmax ∈ S. In that A and
C correspond to the antecedent and consequent of a rule. The antecedent is composed of
event and condition whereas the consequent is composed of action/conclusion. Here As
is the antecedent of a current scenario meta-rule and Ar is the antecedent of Ri (the rule

Journal of Computer Engineering 1 (2009) 29-44

33

to be evaluated), Cs is the consequent of a meta rule in the scenario and Cr is the
consequent of the rule to be evaluated, RLVrs is the relevance value of the meta-rule to
the current scenario and RLVmax is the maximum of those relevance values.

The Fuzzy UML state diagram created will be transformed to a fuzzy Petri net
according to the steps below.

Step1. First for each state change in this diagram, its event and conditions must be

found. Suppose a state diagram as Figure2.

Figure 2. An example of a state diagram

The events and conditions calculated for the state diagram in Figure4 is represented
in table 2

Table 2. Rules applied on state diagram in Figure4

State Condition Event Rule
e1 is e11
e2 is e12 a1

C1
C2 e3 is e13

R1

e1 is e21
a2

C1
C2
C3 e2 is e22

R2

e1 is e31 a3 C1
e5 is e32

R3

Step2. The highest level of divisions in the rules concluded is found. As Sean in

table 2, e1 is in the condition part of all rules so e1 is selected as the scenario. So, the
rules are classified according to the scenario in table3.

Transforming Fuzzy State… H.motameni et al.

34

Table 3. Classification of the rules according to the scenario

Condition Event Rule Scenario
C1 e2 is e12
C2 e3 is e13

R1 e11

C1
C2
C3

e2 is e22 R2 e21

C1 e5 is e32 R3 e31

Step3. For each parameter defined in all the rules we create a place where these
Parameters can't be repeated and also can't be a scenario parameter. Then for different
kinds of states which these parameters can accept in all of the rules, we create a place.
These places are jointed to the proper places

 with a transition, as shown in Figure3.

Figure 3. Step 3 in transition algorithm

Step4. For each rule a transition is placed and the events of each rule are applied on
the transition and we place the min function on the transition, where the value of this
function is the value of µef for each rule, Figure 4.

Figure 4. Step 4 in transition algorithm

Journal of Computer Engineering 1 (2009) 29-44

35

Step5. To calculate the strength of each event on the specified rule in an active
scenario, first we have to calculate µe value of µs(r) using the formula below.

:)/*)),((max()),,(min(max(max(max)(><= RLVRLVccAA rsrsrsrs µµµ (3)

For each rule we create a transition which one of its inputs is a place which is
initialized by the value µs(ri) and the other input of the transition is the previous output
which is the value µef and the output of the transition which is another place which
holds the effective Value.(Figure5)

Figure 5. Step 5 in transition algorithm

Step6. We create a place for the condition of each rule and we valuate each condition

with the fuzzy values calculated. (Figure 6)

Figure 6. Step 6 in transition algorithm

Transforming Fuzzy State… H.motameni et al.

36

Step7. Now, we apply the result of this FPN which is the states of the state diagram
to the FPN. (Figure 7)

Figure 7. Step 7 in transition algorithm

Lemma. If the state diagram is as shown in Figure8, for drawing the fuzzy Petri net
for state3 and showing its reliability to state2, we must place state2 as the condition of
state3 in the fuzzy Petri net, which its value is calculated from the value of the fuzzy
Petri net from state2.

Figure 8. A part of the fuzzy Petri net in state3

5. Case study

The case study that we are going to study is a part of a weather forecasting system.
In this system the atmospheric elements are pressure, temperature, humidity, wind and
cloudiness. This system has two kinds of forecasting. In the first one, which is the
expected weather, it can be one of clear, clear few, clouded instable or clouded stable.
In the second kind, we determine the expected weather event according to the output of
the first part together with the newly changing parameters on the atmospheric elements.
In the second level expected weather event can be any of rain, shower, snow, hail or
fog.

Journal of Computer Engineering 1 (2009) 29-44

37

The UML diagram in Figure9 shows the classes related to this system and the
relationships between each class. Where, the Expected_Weather class contains indexes
which by changes in these parameters the class object changes to one of the weather
conditions: clear, clear few, clouded instable or clouded stable. The next class is the
Expected_weather_Event which its object shows one of the weather conditions. The
purpose of index in the explanations above is the amount and the size of changes,
direction changing and speed changing and etc. The third class is the season class shows
the type of the season that we are in.

Figure 9. An example class diagrams

The fuzzy state diagrams available in Figure10 and Figure11 shows the state diagram of
Expected_weather and Expected_weather_Event classes. As seen, both classes object
first go to start state. After receiving the weather condition from the sensor, the object
will be brought to a possible state according to the fuzzy rules.

Figure 10. State diagram for the Expected_Weather class

Transforming Fuzzy State… H.motameni et al.

38

Figure 11. State diagram for the Expected_Weather _Event class

Table 4, 5 shows the fuzzy rules which change the state of an object to another state
for each state diagram.

Table 4. The events and conditions used in state diagram in Figure 10

Action [Guard Condition] Event Rule

C
lear

pressure_change_velocity is fast
previous_wind_direction was

south
humidity_change_velocity is fast

previous cloud_cover was
overcast

cloud_base_change_velocity is
fast

Season is [Summer]
wind_direction is changing to [north OR

northwest],
humidity_change_direction is decreasing
cloud_cover is changing to broken sky

cloud_base_change_direction is increasing

R1

C
lear Few

pressure_change_velocity is slow
wind_value is breeze

previous_wind_direction was
[south OR southwest]

previous_cloud_cover was
[overcast OR cloudy]

Season is [Summer]
pressure_change_direction is increasing

cloud_cover is changing to [broken sky OR
few]

cloud_base_change_direction is increasing
humidity_change_direction is decreasing
wind_direction is changing to [north OR

northwest]

R2

C
louded Instable

pressure_change_velocity is fast
humidity_change_velocity is fast

previous_wind_value was
[breeze OR medium_strong]

pressure_change_direction is decreasing
humidity_change_direction is increasing

wind_value is changing to [medium_strong
OR strong]

cloud_orientation is changing to vertical
cloud_base_change_direction is decreasing
temperature_change_direction is increasing

R3

C
louded Stable

pressure_change_velocity is slow
humidity_change_velocity is

slow
temperature_change_velocity is

slow
cloud_base_change_velocity is

slow
wind_direction is [southeast OR

south]

pressure_change_direction is decreasing
humidity_change_direction is increasing

temperature_change_direction is increasing
cloud_base_change_direction is decreasing
cloud_orientation is changing to horizontal

R4

Journal of Computer Engineering 1 (2009) 29-44

39

Table 5. The events and conditions used in state diagram in Figure 11

Action [Fuzzy Guard Condition] Fuzzy event Rule

R
ain

Previous_wind_direction was
north
wind_direction_change_velocity
is slow
previous_wind_value was breeze
wind_value_change_velocity is
slow
previous_cloud_color was white,

expected_weather is
clouded_stable
wind_direction is changing to
[south OR southwest]
wind_value is changing to
medium_strong
cloud_color is changing to grey

R5

Show
er

Previous_wind_value was calm
Previous_cloud_color was grey

expected_weather is
clouded_instable
cloud_color is changing to
dark_grey

R6

Snow

temperature is below 0 Celsius
degrees
previous_wind_direction was
south
Previous_cloud_color was white

expected_weather is
clouded_stable
wind_direction is changing to
north
cloud_color is changing to grey

R7

H
ail

temperature is very_high
previous_wind_value was breeze
Previous_cloud_color was grey

expected_weather is
clouded_instable
cloud_color is changing to dark

R8

Fog wind_value is [calm OR breeze] expected_weather is
clouded_stable R9

According to the fuzzy state diagram and the association's relations between the

classes, table-6 will be obtained.

Table 6. The classifications of rules

Expected – Weather Event Expected – Weather Season

-- Clear, Clear few Summer
Rain, hail, shower Clouded stable Winter
Rain, hail, shower Clouded instable Spring
Rain, hail, shower Clouded instable Fall

It is deducted from the table-6 that season can be selected as the largest division of

the sections. So season can be a scenario.
Now using the transformation algorithm the created state diagrams the fuzzy Petri

net is deducted Figure12.

Transforming Fuzzy State… H.motameni et al.

40

Figure 12. The Petri net for the Expected_Weather_Event state diagram

Now we consider that we are in winter season and the sensor of parameter condition
is in the time of T1 and T2 shows the values in table 7

Table 7. The variables in t1 and t2

t2 t1 Attribute
6.5 6 Wind value

22.5 0 Cloud orientation
1200 7200 Cloud base
210 255 Wind direction
57 50 Humidity
1- -4.5 Temperature Value

1000 1003.5 Pressure value
3 2 Cloud cover

Journal of Computer Engineering 1 (2009) 29-44

41

Table-8 shows the fuzzy values of the events and conditions of each rule.

Table 8. The fuzzy values of the condition and event parts according to Table-7

R4 R3 R2 R1
 Attribute

-/- -/ 0.5 -/- -/- Wind value
-0.5/ -/ 0.5 -/- -/- Cloud orientation
0.5/1 -/ 1 -/ 0 -/ 0 Cloud base
0.66 /- -/- -/ 0 -/ 0 Wind direction
0.5/1 -/ 1 -/ 0 -/ 0 Humidity

-/ 1 -/ 1 -/- -/- Temperature Value
0.5/1 -/ 1 -/ 0 -/ 0 Pressure value

-/- -/- -/ 1 -/ 1 Cloud cover

In the first step we want to study how the fuzzy Petri net for the Expected_weather
class works. And according to the values given and events and conditions display how
the object of this class changes. For this propose we act as below.

1- Fuzzify the events for each rule and calculate the value of µEF (ri).

: R2 :R1
µ Pressure-ch-dir-inc (-3.5) = 0
µ Cloud-cover-broken-Few (3) = 1

µ Cloud –base-ch-dir-inc (-5600)= 0
µ Hum-ch-dir-dec (7) = 0
µ Wind –dir- n/nw (210)=0

⇒)2(Refµ = min (0, 1, 0, 0, 0)=0

µ Pressure –ch-dir-inc (-3.5) =0
µ Wind-dir-n/ nw (210) = 0
µ hum-ch-dir-dec (7) = 0
µ Cloud-cover-broken-sky (3) =1
µ Cloud –basech-dir-dec (-5600)=0
⇒)1(Refµ = min (0,0,0,1,0) =0

 :R4 :R3

µ Pressure-ch-dir-dec (-3.5)=1

µ Hum-ch-dir-inc (7) = 1

µ Temp – ch – dir-inc (3.5) = 1

µ Cloud-base-ch-dir-dec (-6000) = 1

µ Clouded-orientation-horizontal (75)=0.5

⇒)4(Refµ = min (1,1,1,1,0.5)= 0.5

µ Pressure-ch-dir-dec (-3.5)=1

µ Hum-ch-dir-inc (7) = 1

µ Wind-value – ms/s (-0.5)= 0.5

µ Cloud-base-ch-dir-dec (-6000) = 1

µ Temp-ch-dir-inc (3.5)=1

⇒)3(Refµ = min (1,1,0.5,1,1)= 0.5

As seen R3, R4 can be fired because their value of µEF is greater than 0. So the active
parts of the fuzzy Petri net are the routes relating to these two transitions.

2- Calculating the strength of the events.

We calculate the strength of an event in a scenario using the formula
 Strength (e, r, s) = efµ (ri) * sµ (ri)
 So, the strength value for R3, R4 is as below

Transforming Fuzzy State… H.motameni et al.

42

 R3 ⇒ strength (e, R3, s) = efµ (R3) * µWinter (R3) = 0.5 * 0=0

 R4 ⇒ strength (e, R4, s) = efµ (R4) * µWinter (R4) = 0.5 * 1=0
So, only the rule R4 can continue its activity in the rest of the fuzzy Petri net and the

R3 deactivates.

3 - Fuzzificating the condition part of the active rules.

Calculate the MEF for the conditions as calculated for the events in step1. Because
R4 is the only active rule we will calculate MEF for r4.

 µ Pressure-ch-velocity-slow (-3.5)= 0.5

 µ hum-ch-velocity-slow (7) = 0.5

 µ temp–ch-velocity-slow (3.5)= 0.5

 µ Cloud-base-velocity-slow (-5600) = 0.5

 µ Wind-dir-s/sw (210)= 0.66

 ⇒ min (0.5, 0.5, 0.5, 0.66) = 0.5
So R4 can still continue its activity.

4- Find the clipping value

Up to this point only r4 succeed its antecedent matching degrees 0.5*0.5 =0.25
So clipping value of 0.25 is used for the action part of r4 which is an expected

weather of clouded-stable

5- Find the state of the object

Maximum of the clipping values for each active rule in the fuzzy Petri net diagram
which for the only active rule R4 is:

max (0.25) = 0.25
Which means an expected weather forecasted for the state of the object of class

Expected_Weather which fuzzy condition and events is clouded stable
Figure 13 shows the steps used.

6. Conclusion

In this paper with the purpose of formalization of the state diagrams in fuzzy UML

for a stronger verification and validation of qualitative parameters in the analysis model
created by analyzers, an algorithm is represented to transform the fuzzy state diagram
into fuzzy Petri net. Also for a case study a weather forecasting system is studied which
has an applied aspect.

Researchers for a further work decide to extend this algorithm for different types of
fuzzy UML diagrams specially activity diagrams and design a software engineering tool
so it can automatically perform the transformation operation.

Verification and applying the validation of efficiency on the result fuzzy Petri nets
will be the future work for designers.

Journal of Computer Engineering 1 (2009) 29-44

43

Figure 13. The fuzzy Petri net of class Expected_Weather running

References

[1] Faul M. B. "Verifiable Modeling Techniques Using a Colored Petri Net Graphical Language"
Technology Review Journal, spring/summer, 2004.

[2] Shin, M., Levis, A. and Wagenhals, L."Transformation of UML-Based System Model into CPN
Model for Validating System Behavior" In: Proc. of Compositional Verification of UML
Models,Workshop of the UML'03 Conference, California, USA, Oct. 21, 2003.

[3] Bernardi, S. Donatelli, S. and Merseguer, J. "From UML Sequence Diagrams and Statecharts to
Analysable Petri Net Models" ACM Proc. Int’l Workshop Software and Performance, pp. 35-
45, 2002.

[4] Eshuis, R. "Semantics and Verification of UML Activity Diagrams for Workflow Modelling"
Ph.D. Thesis, University of Twente (2002).

[5] Pettit, R. G. and Gomaa, H. "Validation of dynamic behavior in UML using colored Petri nets’
UML" (2000), Zaragoza, Spain (2002) 295-302.

[6] Saldhana, J. and Shatz, S. M. "UML Diagrams to Object Petri Net Models: An Approach for
Modeling and Analysis" Proc. of the Int. Conf. on Software Eng. And Knowledge Eng.
(SEKE), Chicago10 – 103 (2000).

[7] Elkoutbi, M. and Rodulf K. Keller: "Modeling Interactive Systems with Hierarchical Colored
Petri Nets" 1998 Advanced Simulation Technologies Conf ., Boston, MA (1998) 432- 437.

[8] L. Bernardinello, F. De Cindio, "A Survey of Basic Net Models and Modular Net Classes",
LNCS, vol. 609, Springer-Verlag, 1992, p.609.

Transforming Fuzzy State… H.motameni et al.

44

[9] Balsamo, S. et al "Model-Based Performance Prediction in Software Development: A Survey"
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004
p295.

[10] Merseguer, J. , L´opezGrao, J. P., Campos J."From UML Activity Diagrams To Stochastic Petri
Nets:Application To Software Performance Engineering" ACM, WOSP 04 January 1416,
2004,

[11] Fukuzawa, K. et al "Evaluating Software Architecture by Colored Petri Net" Dept. of
Computer Sience,Tokyo Institute of Technology Ookayama 2-12-1, Meguro-uk, Tokyo 152-
8552, Japan 2002.

[12] Merseguer, J., Bernardi, S., Campos, J. and Donatelli, S."A Compositional Semantics for UML
State Machines Aimed at Performance Evaluation" M. Silva, A. Giua and J. M Colom (eds.),
Proc. of the ٦th Int. Workshop on Discrete Event Systems (WODES'02), Zaragoza, Spain
(2002) 295-302.

[13] Motameni,H,et al,Mapping State Diagram to Petri net: "An Approach Tousemarkov Theory For
Analyzingnon-Functional Parameters" ieee,international conferenceon computer,information
and system science,december 4_14 2006 , university of bridgport, USA(presented).

[14] Motameni,H,et al "Using Markov Theory For Deriving Non-Functional Parameters On
Transformed Petri Net From Activity Diagram]" ,proc of software engineering conference
(russia), 16-17 November 2006,moscow, russi, (presented).

[15] Motameni, H., Zandakbari, M. and Movaghar, "Deriving Performance Parameters From the
Activity Diagram Using Gspn and Markov Chain", ICCSA 2006 Proceeding of 4th
International Conference On Computer Science and Its Aapplications, San Ddiego, California,
2006.

[16] Motameni, H et al. "Evaluating UML State Diagrams Using Colored Petri Net" SYNASC' 05.
[17] Motameni, H et al. "Verifying and Evaluating UML Activity Diagram by Converting to CPN"

Proc of SYNASC'05,Romania,Sep 2005, (presented).
[18] Object Management Group "UMLTM Profile for Schedulability, Performance, and Time

Specification "OMG Document, Version 1.1, January 2005.
[19] Rumbuaugh,j.,Blaha,m.,Premerlani ,W.,Eddy,F.,Lorensen,W.(1991). "Object-Oreinted

Modeling And Design ", prentice hall , Englewood Cliffs,nj,USA.
[20] Wang lu, "Fuzzy UML",Seminararbeit,Sommersemester 2005.
[21] Zongmin Ma. "Fuzzy Information Modeling With the Uml". Idea, 2005.
[22] Z.M. Ma(2004). "Extending UML For Fuzzy Information Modeling In Object_Oriented

Database ", theories and practices,idea group publishing.
[23] T. Murata, Petri Nets: "Properties, Analysis And Applications", Proceedings of IEEE 77 (1989)

540–541.
[24] L. Bernardinello, F. De Cindio, (Ordinary) Petri Nets (PN),

<http://www.daimi.au.dk/PetriNets/classification>.
[25] K. Jensen, "Colored Petri nets (CPN) ",

http://www.daimi.au.dk/PetriNets/classification/level3/CPN.html>.
[26] Burcin Bostan-Korpeoglu,Adnan Yazici ,A Fuzzy Petri Net Model For Intelligent Database, Data

& Knowledge Engineering (2006), Elsevier,2006.

	Microsoft Word - 5.Doc4.doc

