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Abstract 
Obviously navigation is one of the most complicated issues in mobile robots.  

Intelligent algorithms are often used for error handling in robot navigation. This 
Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by 
using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on 
the field of mobile robot navigation in the 2D environments. The main challenge in 
this issue is to keep track of the position and orientation within a global frame of 
reference using a variety of sensors providing Dead-Reckoned Odometry, Inertial 
and Absolute data. 

 
Keywords: Inertial navigation system, Extended Kalman filter, Error handling. 

 

 
1. Introduction 

 
Each mobile object that is free to move in space has six "degrees of freedom" - or 

ways it can move. There are three linear degrees of freedom (x,y,z) that specify its 
position and three rotational degrees of freedom (theta (pitch), psi (yaw), and phi (roll)) 
that specify its attitude. If we know these six variables, we know where it is and which 
way it is pointed. If we know them over a period of time, then we can also figure out 
how fast it is moving, and what its acceleration rate is. In fact Navigation System is part 
of a mobile object to tell it where it is and what it is its’ attitude.  

 
From inertial measurements we can determine an estimate for linear accelerations 

and angular velocities. By integrating these quantities we determine the velocity vector 
and the body attitude. Position can be calculated by integration of the velocity vector. 
Inertial navigation is thus based on the dead-reckoning principle[1]. 

An IMU is a "clump" of six inertial sensors. Three linear accelerometers and three 
rate gyros make up an IMU. Usually, an IMU also contains a computational unit to do 
the position calculations based off of the sensors.  The operation to combine 
information from such multi-modal sensors is called sensory fusion. A microcontroller 
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is often used to interface with sensors and generate control actions based on information 
gathered from sensors. For reliability and completeness, more than one sensor is 
generally used[2].  

The Kalman Filter (KF) arose out of R.E. Kalman’s interest in applying the concept 
of state vectors to the Wiener filtering problem[3] and it is widely used in aeronautics 
and engineering for two main purposes: for combining measurements of the same 
variables but from different sensors, and for combining an inexact forecast of a system’s 
state with an inexact measurement of the state. In fact Kalman filters can be used to 
derive the best estimation by combining sensory input from different sources[4].  

 
2. Hardware and Software   

 
We performed our experiments by using NAJI2, a three wheels mobile robot, as a 

test pet and 3DM-GX1TM, an IMU, as a measurement system. The 3DM-GX1TM can 
output orientation information in three different forms, Euler Angles, Quaternions, or a 
3*3 rotation matrix. These are essentially equivalent except that the Euler Angles have a 
mathematical singularity whenever Pitch is +/-90 degrees, and are therefore unsuitable 
for use under conditions where such orientations are likely to occur. 3DM-GX1™ 
combines three angular rate gyros with three orthogonal DC accelerometers, three 
orthogonal magnetometers, multiplexer, 16 bit A/D converter, and embedded 
microcontroller, to output its orientation in dynamic and static environments. Operating 
over the full 360 degrees of angular motion on all three axes, 3DM-GX1™ provides 
orientation in matrix, quaternion and Euler formats. The digital serial output can also 
provide temperature compensated calibrated data from all nine orthogonal sensors at 
update rates of 350 Hz. For more information please refer to www.microstrain.com 

 
A navigation panel, a Graphic User Interface (GUI), was designed by LabView® and 

the implementations of algorithms were done by MATLAB Version 7. 
 

3. Error handling process: 
 
The process of error handling is divided into two following phases: Error detection 

and Error correction.  In order to test NAJI2 was programmed for cycling in 158 cm 
diameter to provide a testing motion with constant velocity on the flat floor. A red 
marker was fixed on the head of the NAJI2 to draw its path. 

 
3.1 Error detection process: 

 
The robot motion was too slow and in a constant velocity we let the acceleration to 

be zero. First the progress was not successful because it performed for one pride and we 
couldn't find the error function. So in the second attempt it cycled for six prides and 
then after calculating the error function the proper result was found and the process of 
error detection was done. The figure 1, 2 illustrates the passed path on the X, Y axis 
before error correction. It was not come back to zero. 
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Figure 1.  passed path on the X axis before error correction 
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Figure 2. The passed path on the Y axis before error correction 
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Figure 3. The passed path before error correction for on period 
 

3.2 Error correction 
 
The error can be corrected. It was done first for one period and then for six periods. 

The average of error was calculated and we found the cosine function is down trended 
by an approximate linear angel .So to correct the deviation we need to calculate this 
kind of error just by the total number of sampling and the amount of deviation for X,Y 
separately. 

 
29.57deviation  ofamount  The −=∆= x  

3245  sampling ofnumber   totalThe == n  
536-0.0176548=

∆
=

n
xerror

 
80.22deviation  ofamount  The =∆= y  

3245  sampling ofnumber   totalThe == n  
940.02472110=

∆
=

n
yerror

 
 
The error shows us the amount of error in each sample and we must add the absolute 

value of error to the X and Y separately. The following figures illustrate these error 
corrections. 

 
Figure 6 provide the motion profile and it illustrates the comparison of motion profile 

before and after error correction process.  
   
4. Vehicle Models and Odometry 
 
As we allowed the vehicle to move on 2D surface (a floor) and point in arbitrary 

directions. We can parameterize the vehicle pose vx (the joint of position and 
orientation) as: 
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Figure 4. Calculating the error average on the 

X axis 
Figure 5. Calculating the error average on the 

Y axis 

 
 

 
Figure 6. Comparing the motion profile before and after error correction 
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Figure 7 is a diagram of NAJI2, a non-holonomic (local degrees of freedom less than 
global degree of freedom[5] vehicle with “Ackerman" steering. The angle of the 
steering wheels is given by φ  and the instantaneous forward velocity (sometimes called 
throttle) is V . So we can say 





=
=

)sin(
)cos(

vv

vv

Vy
Vx

θ
θ


  

   Using the instantaneous center of rotation we can calculate the rate of change of 
orientation as a function of steer angle: 

)tan(φ=
a
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)tan(φ
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We can now discretise this model by inspection: 
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Note that we have started to lump the throttle and steer into a control-this makes 

sense if you think about the controlling actions of a human driver. Last Equation is 
model for a perfect, noiseless vehicle. Clearly this a little unrealistic-we need to model 
uncertainty[6]. One popular way to do this is to insert terms into the control signal u 
such that 

 
)()()( kvkuku n +=          (8) 

 
 where )(kun is a nominal (intended) control signal and )(kv is a zero mean Gaussian 

distributed noise vector: 
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This completes a simple probabilistic model of a vehicle. We shall now see how 

propagation of this model affects uncertainty in vehicle pose over time. 
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Figure 7. A non-holonomic vehicle with Ackerman steering 

 
5. Evolution of Uncertainty 

   
We will examine how an initial uncertainty in vehicle pose increases over time as the 

vehicle moves when only the control signal u  is available. The model derived in the 
previous section is non-linear and so we will have to use the non-linear form of the 
prediction step. 

 
 Assume at time k  we have been given a previous best estimate of the vehicle pose 

)1|1(ˆ −− kkxv and an associated covariance )1|1( −− kkPv .  
)),(),1|1(ˆ()1|( kkukkXfkkXv −−=−       (11) 
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We need to evaluate the  Jacobians with respect to state and control noise at 

)1|1(ˆ −− kkxv .We do this by differentiating each row of f by each state and each control 
respectively: 
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Figure 8. Uncertainty bounds for Ackerman model 
 
The Figure 8 shows the results of iterating equations 11 and 12. The circles are the 

true location of the vehicle whereas the crosses mark the dead-reckoned locations. The 
orientation of the vehicle is made clear by the orientation of the triangles. Note the 
divergence between true and dead-reckoned locations. This is typical of all dead 
reckoning methods. The only thing that can be changed is the rate of divergence. Things 
are pretty much as we might expect. The uncertainty injected into the system via the 
noisy control makes the estimated covariance of the vehicles grow without bound[7]. 

 
There is an important point to make here that we must understand. In actual real life 

the real robot is integrating the noisy control signal. The true trajectory will therefore 
always drift away from the trajectory estimated by the algorithms running inside the 
robot. This is exactly the same as closing our eyes and trying to walk across University 
Parks. Our inner ears and legs give you u  which we pass through our own kinematics 
model of our body in our head. Of course, one would expect a gross accumulation of 
error as the time spent walking “open loop" increases. The point is that all 
measurements such as velocity and rate of turn are measured in the vehicle frame and 
must be integrated, along with the noise on the measurements. This always leads to 
what is called “dead reckoning drift". Figure 9 shows the effect of integrating odometry 
on NAJI2.The main cause of this divergence on land vehicles is wheel slip. Typically 
robot wheels are fitted with encoders that measure the rotation of each wheel. Position 
is then an integral-function of these “wheel counts". The problem is a wheel or radius r 
may have turned through θ but due to slip/skid the distance traveled over the ground is 
only θη r)1( −  where η  is an unobservable slip parameter.  
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Figure 9. The effect of integration Odometry 
 
The Dead Reckoned position from NAJI2 just confused us! The start and end 

locations are actually the same place! See how we could roll the trajectory back over 
itself. This is typical of dead reckoned trajectories - small angular errors integrate to 
give massive long term errors 

 
6. Using Dead-Reckoned Odometry Measurements 
 
The model in the pervious section used velocity and steer angles as control input into 

the model. It is common to find that this low level knowledge is not easy to obtain or 
that the relationship between control, prior and prediction is not readily discernable. The 
architecture in figure 10 is a typical example. 

 

 
 

Figure 10. Use Dead-Reckoned Odometry Measurements 
 
Sometimes a navigation system will be given a dead reckoned position as input 

without recourse to the control signals that were involved. Nevertheless the dead-
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reckoned position can be converted into a control input (a stream of small motions) for 
use in the core navigation system. 

 
It would clearly be a bad plan to simply use a dead-reckoned odometry estimate as a 

direct measurement of state in something like a Kalman Filter. Consider Figure 9 which 
is the dead reckoned position of NAJI2 moving around some corridors. Clearly by the 
end of the experiment we cannot reasonably interpret dead-reckoned position as an 
unbiased measurement of position! 

 
The low level controller on the vehicle reads encoders on the vehicle's wheels and 

outputs an estimate (with no metric of uncertainty) of its location. We can make a guess 
at the kind of model it uses. Assume it has two wheels (left and right), radius r mounted 
either side of its center of mass which in one time interval turn an amount lδθ , rδθ - as 
shown in Figure 10. We align a body-centered co-ordinate frame on the vehicle as 
shown. We want to express the change of position of the center of the vehicle as a 
function of lδθ , rδθ : 
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Immediately then we have 
 

















−

−
=

















α
α

α

θ
sin

)cos1(
c

c

d
dy
dx

        (20) 
Which for small α  becomes: 
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The dead-reckoning system in the vehicle simply compounds these small changes in 

position and orientation to obtain a global position estimate. Starting from an initial 
nominal frame at each iteration of its sensing loop it deduces a small change in position 
and orientation, and then “adds" this to its last dead-reckoned position. Of course the 
“addition" is slightly more complex than simple adding (otherwise the x coordinate 
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would always be zero!). What actually happens is that the vehicle composes successive 
co-ordinate transformation. This is an important concept and will be discussed in the 
next section. 

 

 
 
 

Figure 11. Geometric Construction for a two wheel drive vehicle 
 
7. Composition of Transformations 
 
 Figure 7 shows three relationships between three coordinate frames. We can express 

any coordinate j frame with respect to another frame  i  as a three-vector ][, θxyx ji = . Here 
x and y are translations in frame i  to a point p  and θ  is anti-clockwise rotation 
around p . We define two operators ⊕  and Θ to allow us to compose (chain together) 
multiple transformations: 

 
kjjiki xxx ,,, ⊕=          (22) 

 
jiij xx ,, Θ=         (23) 

     
With reference to figure 12 we see that 3,22,13,1 xxx ⊕= .But what exactly are these 

operators? Well, they are just a short hand for a function of one or two transformations: 
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These questions allow us to express something (perhaps a point or vehicle) described 
in one frame, in another alternative frame. We can use this notation to explain the 
compounding of odometry measurements. Figure 12 shows a vehicle with a prior 
pose )()1()( 00 kukxkx ⊕−= . The processing of wheel rotations between successive 
readings has indicated a vehicle-relative transformation (i.e. n  the frame of the 
vehicle) u . The task of combining this new motion )(ku with the old dead-reckoned 
estimate 0x to arrive at a new dead-reckoned pose 0x is trivial. It is simply: 

 
)()1()( 00 kukxkx ⊕−=        (26) 

   
   We have now explained a way in which measurements of wheel rotations can be 

used to estimate dead-reckoned pose. However we set out to figure out a way in which a 
dead-reckoned pose could be used to form a control input or measurement into a 
navigation system. In other words we are given from the low-level vehicle software a 
sequence )()...2(),1( 000 kxxx etc and we want to figure out )(ku . This is now simple and 
we can invert equation 6.27 to get 

 
)()1()( 00 kxkxku ⊕−Θ=         (27) 

 
Just by looking at the Figure 12 we can see that the transformation )(ku  is 

equivalent to going back along )1(0 −kx and forward along )(0 kx .This gives us a small 
control vector )(ku derived from two successive dead-reckoned poses that is suitable for 
use in another hopefully less error prone navigation algorithm. Effectively equation 27 
subtracts out the common dead-reckoned gross error - locally odometry is good -
globally it is poor. 

 

 
Figure 12. Using transformation compositions to compound a local odometry measurement with a 

prior dead-reckoned estimate to deduce a new dead-reckoned estimate 
    
  We are now in a position to write down a plant model for a vehicle using a dead 

reckoned position as a control input: 
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))(),(()1( kukxfkx vv =+         (28) 
 

))()1(()( 00 kxkxkxv ⊕−Θ⊕=       (29) 
 

controldr −  
 

)()( 0 kukxv ⊕=          (30) 
 
 It is reasonable to ask “how dose an initial uncertainty in vehicle pose vP  propagates 

over time. We know that one way to address this question is to propagate the second 
order statistics (covariance) of a pdf for vx through f using following equation: 

 
To do this we need to figure out the Jacobians of equation 30 with respect to xv and 

u. This is one area where the compositional representation we have adopted simplifies 
matters. We can define and calculate the following Jacobians the equation was 
explained before: 
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    To do this we need to figure out the Jacobians of equation 30 with respect to vx and 

u. This is one area where the compositional representation we have adopted simplifies 
matters. We can define and calculate the following Jacobians: 
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This allows us to write (substituting into equation 4.31): 
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Were the matrix 0U describes the strength of noise in the small shifts in pose 
represented by 0u derived from two sequential dead-reckoned poses. A simple form of 
this matrix would be purely diagonal: 
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where the diagonals are variances in odometry noise. For example if the odometry 

loop ran at 20Hz and the vehicle is moving at 1m/s the magnitude of translation in u 
would be 5cm. If we say slip accounts for perhaps one percent of distance traveled we 
might “try" a value of 222 )100/05.0(== oyox σσ . Allowing a maximum rotation of w 

perhaps a good starting guess for 2
θσ o  would be 2)100/(w . These numbers will give 

sensible answers while the vehicle is moving but not when it is stopped. Even when 
00 =u the covariance vP will continue to inflate. This motivates the use of a time 

varying 0U which is a function of )(0 ku .  
 

8. Conclusion 
 
In the experimental implementation for Kalman Filter we found that we can’t depend 

on the estimated values at the primary states and we were looking for a solution to 
improve the convergences speed of the algorithm. We found that it can be solved just by 
changing the transmission matrix from the reference coordinations to global frame. 
Because by changing the transmission matrix the Kinematics Model can be changed and 
as the Kalman Filter is related to the Kinematics Model the filter have different outputs. 
Filter Performance can be improved just by calibrating the IMU and it is argued that 
computing the INS attitude using quaternion has more advantages than using Euler 
angles and the direction cosine matrix.  

 
Kalman Filter can be a good linear filter but when we deal with the non-linear 

problems the Extended Kalman Filter can be a good solution but not all. 
 
In our experimental implementation of INS algorithms, the performance of the filter 

was influenced by the choice of the process noise attributes. The noise strengths were 
chosen by engineering judgment and experience and this is a limitation. A method 
which is able to identify the strengths of process noise from the collected raw data is 
need.    
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Figure 13. NAJI2 was programmed to cycle around the chair. 
 
 

References: 
 

[1] Jorge Lobo,Paulo Lucas,Jorge dias,A.Traca de Almeida, “Inertial Navigation System for Mobile 
Land vehicels”,ISR Instituto of Robotica, University of Coimbra, Portugal 

[2] Krishna m. Neaupane, Mitsutaka Sugimoto, “An inverse Boundary value problem using the 
Extended Kalman filter”, Science Asia,Japan,No.29,pp 121-126,2003. 

[3] Kalman, R.E.(1960). “Stochastic Proccesses and Filtering Theory”, Journal of Basic Engineering, 
Series D 82, 34-45 

[4 ] Greg Welch, Gary Bishop, “An Introduction to the Kalman Filter”, Department of Computer 
Science, University of North Carolina at Chapel Hill 

[5] Paul Newman, “C4B- Mobile Robotics”, An Introduction to Estimation and its application to Mobile 
Robotics, Version 2.00, October 2005, 10-12 

[6] Rachel Kleinbauer, “Kalman Filtering Implementation with MATLAB®”, Helsinki University of 
Technology, November 2004 

[7] Grewal M.S., Henderson V. D., Miyasako R. S., “Application of Kalman Filtering”, 3rd Edition, 
New York, Jon Wiley & Sons, 1997. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Microsoft Word - 8.Doc7.doc

