

Journal of Computer Engineering 1 (2009) 77-91

61

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Aydin Saderzadeh
Mechatronics Research Lab

Faculty of Electronic, Computer
Engineering& IT

Islamic Azad university, Qazvin Branch
Qazvin, Iran

E-mail:aydin_saderzadeh@yahoo.com

M.Mehdi Sanaatiyan
Mechatronics Research Lab

Faculty of Electronic, Computer
Engineering& IT

Islamic Azad university, Qazvin Branch
Qazvin, Iran

 E-mail:m.sanaatiyan@gmail.com

M.Habbibnejad Korayem
Faculty of Mechanic Engineering

Iran University of Science and
Technology
Tehran-Iran

 E-mail:hkorayem@iust.ac.ir

Ali Shahri
Faculty of Electronic Engineering

Iran University of Science and Technology
Tehran-Iran

 E-mail:shahri@iust.ac.ir

H.Reza Momeni
Faculty of Technical & Engineering

Tarbiyat Modares University
Tehran-Iran

E-mail:momeni_h@modares.ac.ir

Abstract
Obviously navigation is one of the most complicated issues in mobile robots.

Intelligent algorithms are often used for error handling in robot navigation. This
Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by
using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on
the field of mobile robot navigation in the 2D environments. The main challenge in
this issue is to keep track of the position and orientation within a global frame of
reference using a variety of sensors providing Dead-Reckoned Odometry, Inertial
and Absolute data.

Keywords: Inertial navigation system, Extended Kalman filter, Error handling.

1. Introduction

Each mobile object that is free to move in space has six "degrees of freedom" - or

ways it can move. There are three linear degrees of freedom (x,y,z) that specify its
position and three rotational degrees of freedom (theta (pitch), psi (yaw), and phi (roll))
that specify its attitude. If we know these six variables, we know where it is and which
way it is pointed. If we know them over a period of time, then we can also figure out
how fast it is moving, and what its acceleration rate is. In fact Navigation System is part
of a mobile object to tell it where it is and what it is its’ attitude.

From inertial measurements we can determine an estimate for linear accelerations

and angular velocities. By integrating these quantities we determine the velocity vector
and the body attitude. Position can be calculated by integration of the velocity vector.
Inertial navigation is thus based on the dead-reckoning principle[1].

An IMU is a "clump" of six inertial sensors. Three linear accelerometers and three
rate gyros make up an IMU. Usually, an IMU also contains a computational unit to do
the position calculations based off of the sensors. The operation to combine
information from such multi-modal sensors is called sensory fusion. A microcontroller

Mobile Robot Navigation Error… Aydin saderzadeh et al.

62

is often used to interface with sensors and generate control actions based on information
gathered from sensors. For reliability and completeness, more than one sensor is
generally used[2].

The Kalman Filter (KF) arose out of R.E. Kalman’s interest in applying the concept
of state vectors to the Wiener filtering problem[3] and it is widely used in aeronautics
and engineering for two main purposes: for combining measurements of the same
variables but from different sensors, and for combining an inexact forecast of a system’s
state with an inexact measurement of the state. In fact Kalman filters can be used to
derive the best estimation by combining sensory input from different sources[4].

2. Hardware and Software

We performed our experiments by using NAJI2, a three wheels mobile robot, as a

test pet and 3DM-GX1TM, an IMU, as a measurement system. The 3DM-GX1TM can
output orientation information in three different forms, Euler Angles, Quaternions, or a
3*3 rotation matrix. These are essentially equivalent except that the Euler Angles have a
mathematical singularity whenever Pitch is +/-90 degrees, and are therefore unsuitable
for use under conditions where such orientations are likely to occur. 3DM-GX1™
combines three angular rate gyros with three orthogonal DC accelerometers, three
orthogonal magnetometers, multiplexer, 16 bit A/D converter, and embedded
microcontroller, to output its orientation in dynamic and static environments. Operating
over the full 360 degrees of angular motion on all three axes, 3DM-GX1™ provides
orientation in matrix, quaternion and Euler formats. The digital serial output can also
provide temperature compensated calibrated data from all nine orthogonal sensors at
update rates of 350 Hz. For more information please refer to www.microstrain.com

A navigation panel, a Graphic User Interface (GUI), was designed by LabView® and

the implementations of algorithms were done by MATLAB Version 7.

3. Error handling process:

The process of error handling is divided into two following phases: Error detection

and Error correction. In order to test NAJI2 was programmed for cycling in 158 cm
diameter to provide a testing motion with constant velocity on the flat floor. A red
marker was fixed on the head of the NAJI2 to draw its path.

3.1 Error detection process:

The robot motion was too slow and in a constant velocity we let the acceleration to

be zero. First the progress was not successful because it performed for one pride and we
couldn't find the error function. So in the second attempt it cycled for six prides and
then after calculating the error function the proper result was found and the process of
error detection was done. The figure 1, 2 illustrates the passed path on the X, Y axis
before error correction. It was not come back to zero.

Journal of Computer Engineering 1 (2009) 61-75

63

Figure 1. passed path on the X axis before error correction

349.9−=∆x
546=n

106-0.0171227=
∆

=
n
xerror

Figure 2. The passed path on the Y axis before error correction

86.11=∆y
546=n

170.02172161=
∆

=
n
yerror

Mobile Robot Navigation Error… Aydin saderzadeh et al.

64

Figure 3. The passed path before error correction for on period

3.2 Error correction

The error can be corrected. It was done first for one period and then for six periods.

The average of error was calculated and we found the cosine function is down trended
by an approximate linear angel .So to correct the deviation we need to calculate this
kind of error just by the total number of sampling and the amount of deviation for X,Y
separately.

29.57deviation ofamount The −=∆= x

3245 sampling ofnumber totalThe == n
536-0.0176548=

∆
=

n
xerror

80.22deviation ofamount The =∆= y

3245 sampling ofnumber totalThe == n
940.02472110=

∆
=

n
yerror

The error shows us the amount of error in each sample and we must add the absolute

value of error to the X and Y separately. The following figures illustrate these error
corrections.

Figure 6 provide the motion profile and it illustrates the comparison of motion profile

before and after error correction process.

4. Vehicle Models and Odometry

As we allowed the vehicle to move on 2D surface (a floor) and point in arbitrary

directions. We can parameterize the vehicle pose vx (the joint of position and
orientation) as:
















=

v

v

v

v y
x

X
θ

 (1)

Journal of Computer Engineering 1 (2009) 61-75

65

Figure 4. Calculating the error average on the

X axis
Figure 5. Calculating the error average on the

Y axis

Figure 6. Comparing the motion profile before and after error correction

Mobile Robot Navigation Error… Aydin saderzadeh et al.

66

Figure 7 is a diagram of NAJI2, a non-holonomic (local degrees of freedom less than
global degree of freedom[5] vehicle with “Ackerman" steering. The angle of the
steering wheels is given by φ and the instantaneous forward velocity (sometimes called
throttle) is V . So we can say





=
=

)sin(
)cos(

vv

vv

Vy
Vx

θ
θ




 Using the instantaneous center of rotation we can calculate the rate of change of
orientation as a function of steer angle:

)tan(φ=
a
L

)tan(φ
La = (2)

Va v =θ (3)

)tan(φθ
L
V

v = (4)

We can now discretise this model by inspection:

))(),(()1(kukXfkX vv =+ (5)









=

)(
)(

)(
k
kV

ku
φ

 (6)





















+

+
+

=
















+
+
+

L
kkTVk

kkTVkx
kkTVkx

k
ky
kx

v

vv

vv

v

v

v

))(tan()()(

))(sin()()(
))(cos()()(

)1(
)1(
)1(

φδ
θ

θδ
θδ

θ
 (7)

Note that we have started to lump the throttle and steer into a control-this makes

sense if you think about the controlling actions of a human driver. Last Equation is
model for a perfect, noiseless vehicle. Clearly this a little unrealistic-we need to model
uncertainty[6]. One popular way to do this is to insert terms into the control signal u
such that

)()()(kvkuku n += (8)

 where)(kun is a nominal (intended) control signal and)(kv is a zero mean Gaussian

distributed noise vector:

)
0

0
,0(~)(2

2












Ν

σ
σ

φ

Vkv (9)

)
0

0
),((~)(2

2












Ν

σ
σ

φ

V
n kuku (10)

This completes a simple probabilistic model of a vehicle. We shall now see how

propagation of this model affects uncertainty in vehicle pose over time.

Journal of Computer Engineering 1 (2009) 61-75

67

Figure 7. A non-holonomic vehicle with Ackerman steering

5. Evolution of Uncertainty

We will examine how an initial uncertainty in vehicle pose increases over time as the

vehicle moves when only the control signal u is available. The model derived in the
previous section is non-linear and so we will have to use the non-linear form of the
prediction step.

 Assume at time k we have been given a previous best estimate of the vehicle pose

)1|1(ˆ −− kkxv and an associated covariance)1|1(−− kkPv .
)),(),1|1(ˆ()1|(kkukkXfkkXv −−=− (11)

T
vv

T
xvXv FQFFkkPFkkP ∇∇+∇−−∇=−)1|1()1|((12)

In this case












= 2

2

0
0

φσ
σVQ (13)

We need to evaluate the Jacobians with respect to state and control noise at

)1|1(ˆ −− kkxv .We do this by differentiating each row of f by each state and each control
respectively:















 −
=∇

100
)cos(10
)sin(01

v

v

X T
T

F θδ
θδ

 (14)





















=∇

L
T

L
T
T
T

F v

v

u
)(sec

0
0

)tan(
)sin(
)cos(

2 φδφδ
θδ
θδ

 (15)

Mobile Robot Navigation Error… Aydin saderzadeh et al.

68

Figure 8. Uncertainty bounds for Ackerman model

The Figure 8 shows the results of iterating equations 11 and 12. The circles are the

true location of the vehicle whereas the crosses mark the dead-reckoned locations. The
orientation of the vehicle is made clear by the orientation of the triangles. Note the
divergence between true and dead-reckoned locations. This is typical of all dead
reckoning methods. The only thing that can be changed is the rate of divergence. Things
are pretty much as we might expect. The uncertainty injected into the system via the
noisy control makes the estimated covariance of the vehicles grow without bound[7].

There is an important point to make here that we must understand. In actual real life

the real robot is integrating the noisy control signal. The true trajectory will therefore
always drift away from the trajectory estimated by the algorithms running inside the
robot. This is exactly the same as closing our eyes and trying to walk across University
Parks. Our inner ears and legs give you u which we pass through our own kinematics
model of our body in our head. Of course, one would expect a gross accumulation of
error as the time spent walking “open loop" increases. The point is that all
measurements such as velocity and rate of turn are measured in the vehicle frame and
must be integrated, along with the noise on the measurements. This always leads to
what is called “dead reckoning drift". Figure 9 shows the effect of integrating odometry
on NAJI2.The main cause of this divergence on land vehicles is wheel slip. Typically
robot wheels are fitted with encoders that measure the rotation of each wheel. Position
is then an integral-function of these “wheel counts". The problem is a wheel or radius r
may have turned through θ but due to slip/skid the distance traveled over the ground is
only θη r)1(− where η is an unobservable slip parameter.

Journal of Computer Engineering 1 (2009) 61-75

69

Figure 9. The effect of integration Odometry

The Dead Reckoned position from NAJI2 just confused us! The start and end

locations are actually the same place! See how we could roll the trajectory back over
itself. This is typical of dead reckoned trajectories - small angular errors integrate to
give massive long term errors

6. Using Dead-Reckoned Odometry Measurements

The model in the pervious section used velocity and steer angles as control input into

the model. It is common to find that this low level knowledge is not easy to obtain or
that the relationship between control, prior and prediction is not readily discernable. The
architecture in figure 10 is a typical example.

Figure 10. Use Dead-Reckoned Odometry Measurements

Sometimes a navigation system will be given a dead reckoned position as input

without recourse to the control signals that were involved. Nevertheless the dead-

Mobile Robot Navigation Error… Aydin saderzadeh et al.

70

reckoned position can be converted into a control input (a stream of small motions) for
use in the core navigation system.

It would clearly be a bad plan to simply use a dead-reckoned odometry estimate as a

direct measurement of state in something like a Kalman Filter. Consider Figure 9 which
is the dead reckoned position of NAJI2 moving around some corridors. Clearly by the
end of the experiment we cannot reasonably interpret dead-reckoned position as an
unbiased measurement of position!

The low level controller on the vehicle reads encoders on the vehicle's wheels and

outputs an estimate (with no metric of uncertainty) of its location. We can make a guess
at the kind of model it uses. Assume it has two wheels (left and right), radius r mounted
either side of its center of mass which in one time interval turn an amount lδθ , rδθ - as
shown in Figure 10. We align a body-centered co-ordinate frame on the vehicle as
shown. We want to express the change of position of the center of the vehicle as a
function of lδθ , rδθ :

αδθ)2(Lcr r −= (16)

αδθ)2(Lcr l −= (17)

rl

rlLc
δθδθ
δθδθ

−
+

=⇒
2 (18)

)(2

rlL
r

δθδθα −=⇒
 (19)

Immediately then we have

















−

−
=

















α
α

α

θ
sin

)cos1(
c

c

d
dy
dx

 (20)
Which for small α becomes:





















−−
+=

















L
r

r
d
dy
dx

rl

rl

)(2
2)(

0

δθδθ
δθδθ

θ

 (21)

The dead-reckoning system in the vehicle simply compounds these small changes in

position and orientation to obtain a global position estimate. Starting from an initial
nominal frame at each iteration of its sensing loop it deduces a small change in position
and orientation, and then “adds" this to its last dead-reckoned position. Of course the
“addition" is slightly more complex than simple adding (otherwise the x coordinate

Journal of Computer Engineering 1 (2009) 61-75

71

would always be zero!). What actually happens is that the vehicle composes successive
co-ordinate transformation. This is an important concept and will be discussed in the
next section.

Figure 11. Geometric Construction for a two wheel drive vehicle

7. Composition of Transformations

 Figure 7 shows three relationships between three coordinate frames. We can express

any coordinate j frame with respect to another frame i as a three-vector][, θxyx ji = . Here
x and y are translations in frame i to a point p and θ is anti-clockwise rotation
around p . We define two operators ⊕ and Θ to allow us to compose (chain together)
multiple transformations:

kjjiki xxx ,,, ⊕= (22)

jiij xx ,, Θ= (23)

With reference to figure 12 we see that 3,22,13,1 xxx ⊕= .But what exactly are these

operators? Well, they are just a short hand for a function of one or two transformations:









++
−+

=⊕
12121

12121
21 cossin

sincos
θθ
θθ

yxy
yxx

xx (24)



















−

−
−−

=Θ

1

1111

1111

1 cossin
sincos

θ

θθ
θθ

yx
yx

x (25)

Mobile Robot Navigation Error… Aydin saderzadeh et al.

72

These questions allow us to express something (perhaps a point or vehicle) described
in one frame, in another alternative frame. We can use this notation to explain the
compounding of odometry measurements. Figure 12 shows a vehicle with a prior
pose)()1()(00 kukxkx ⊕−= . The processing of wheel rotations between successive
readings has indicated a vehicle-relative transformation (i.e. n the frame of the
vehicle) u . The task of combining this new motion)(ku with the old dead-reckoned
estimate 0x to arrive at a new dead-reckoned pose 0x is trivial. It is simply:

)()1()(00 kukxkx ⊕−= (26)

 We have now explained a way in which measurements of wheel rotations can be

used to estimate dead-reckoned pose. However we set out to figure out a way in which a
dead-reckoned pose could be used to form a control input or measurement into a
navigation system. In other words we are given from the low-level vehicle software a
sequence)()...2(),1(000 kxxx etc and we want to figure out)(ku . This is now simple and
we can invert equation 6.27 to get

)()1()(00 kxkxku ⊕−Θ= (27)

Just by looking at the Figure 12 we can see that the transformation)(ku is

equivalent to going back along)1(0 −kx and forward along)(0 kx .This gives us a small
control vector)(ku derived from two successive dead-reckoned poses that is suitable for
use in another hopefully less error prone navigation algorithm. Effectively equation 27
subtracts out the common dead-reckoned gross error - locally odometry is good -
globally it is poor.

Figure 12. Using transformation compositions to compound a local odometry measurement with a

prior dead-reckoned estimate to deduce a new dead-reckoned estimate

 We are now in a position to write down a plant model for a vehicle using a dead

reckoned position as a control input:

Journal of Computer Engineering 1 (2009) 61-75

73

))(),(()1(kukxfkx vv =+ (28)

))()1(()(00 kxkxkxv ⊕−Θ⊕= (29)

controldr −

)()(0 kukxv ⊕= (30)

 It is reasonable to ask “how dose an initial uncertainty in vehicle pose vP propagates

over time. We know that one way to address this question is to propagate the second
order statistics (covariance) of a pdf for vx through f using following equation:

To do this we need to figure out the Jacobians of equation 30 with respect to xv and

u. This is one area where the compositional representation we have adopted simplifies
matters. We can define and calculate the following Jacobians the equation was
explained before:

T

vv
T

xx GQGFkkPFkkP ∇∇+∇−−∇=−)1|1()1|((31)

 To do this we need to figure out the Jacobians of equation 30 with respect to vx and

u. This is one area where the compositional representation we have adopted simplifies
matters. We can define and calculate the following Jacobians:

1
)(),(21

211 x
xxxxJ

∂
⊕∂

=
∆

 (32)
















−−
−−

=
100

sincos10
cossin01

1212

1212

θθ
θθ

yx
yx

 (33)

2
)(),(21

212 x
xxxxJ

∂
⊕∂

=
∆ (34)















 −
=

100
0cossin
0sincos

11

11

θθ
θθ

 (35)

This allows us to write (substituting into equation 4.31):

T
vv

T
vvv

uxJUuxJ

uxJkkPuxJkkP

),(),(

),()11(),()1(

02002

0101

+

−−=− (36)

Mobile Robot Navigation Error… Aydin saderzadeh et al.

74

Were the matrix 0U describes the strength of noise in the small shifts in pose
represented by 0u derived from two sequential dead-reckoned poses. A simple form of
this matrix would be purely diagonal:

















=
2

2

2

0

00
00
00

θσ
σ

σ

o

oy

ox

U (37)

where the diagonals are variances in odometry noise. For example if the odometry

loop ran at 20Hz and the vehicle is moving at 1m/s the magnitude of translation in u
would be 5cm. If we say slip accounts for perhaps one percent of distance traveled we
might “try" a value of 222)100/05.0(== oyox σσ . Allowing a maximum rotation of w

perhaps a good starting guess for 2
θσ o would be 2)100/(w . These numbers will give

sensible answers while the vehicle is moving but not when it is stopped. Even when
00 =u the covariance vP will continue to inflate. This motivates the use of a time

varying 0U which is a function of)(0 ku .

8. Conclusion

In the experimental implementation for Kalman Filter we found that we can’t depend

on the estimated values at the primary states and we were looking for a solution to
improve the convergences speed of the algorithm. We found that it can be solved just by
changing the transmission matrix from the reference coordinations to global frame.
Because by changing the transmission matrix the Kinematics Model can be changed and
as the Kalman Filter is related to the Kinematics Model the filter have different outputs.
Filter Performance can be improved just by calibrating the IMU and it is argued that
computing the INS attitude using quaternion has more advantages than using Euler
angles and the direction cosine matrix.

Kalman Filter can be a good linear filter but when we deal with the non-linear

problems the Extended Kalman Filter can be a good solution but not all.

In our experimental implementation of INS algorithms, the performance of the filter

was influenced by the choice of the process noise attributes. The noise strengths were
chosen by engineering judgment and experience and this is a limitation. A method
which is able to identify the strengths of process noise from the collected raw data is
need.

Journal of Computer Engineering 1 (2009) 61-75

75

Figure 13. NAJI2 was programmed to cycle around the chair.

References:

[1] Jorge Lobo,Paulo Lucas,Jorge dias,A.Traca de Almeida, “Inertial Navigation System for Mobile
Land vehicels”,ISR Instituto of Robotica, University of Coimbra, Portugal

[2] Krishna m. Neaupane, Mitsutaka Sugimoto, “An inverse Boundary value problem using the
Extended Kalman filter”, Science Asia,Japan,No.29,pp 121-126,2003.

[3] Kalman, R.E.(1960). “Stochastic Proccesses and Filtering Theory”, Journal of Basic Engineering,
Series D 82, 34-45

[4] Greg Welch, Gary Bishop, “An Introduction to the Kalman Filter”, Department of Computer
Science, University of North Carolina at Chapel Hill

[5] Paul Newman, “C4B- Mobile Robotics”, An Introduction to Estimation and its application to Mobile
Robotics, Version 2.00, October 2005, 10-12

[6] Rachel Kleinbauer, “Kalman Filtering Implementation with MATLAB®”, Helsinki University of
Technology, November 2004

[7] Grewal M.S., Henderson V. D., Miyasako R. S., “Application of Kalman Filtering”, 3rd Edition,
New York, Jon Wiley & Sons, 1997.

	Microsoft Word - 8.Doc7.doc

