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Abstract 
In this paper, we present a multi-formalism modeling framework (abbreviated 

by MFMF) for modeling and simulation. The proposed framework is defined based 
on the concepts of meta-models and uses object-orientation to overcome the 
complexities and to enhance the extensibility. The framework can be used as a basis 
for modeling by various formalisms and to support model composition in a unified 
manner. The structure of the framework is organized in four layers: (1) the meta-
formalism layer, (2) the formalism layer, (3) the class-model layer, and (4) the 
model layer. The basic concepts of the framework are formally defined using object 
constraint language (OCL) and have been illustrated using some examples. We have 
also explained the model composition structure and the solution strategies of the 
proposed framework. A prototype tool for the proposed framework is implemented, 
which is briefly introduced in this paper. 

 
Keywords: Modeling tool, object-oriented modeling (OOM), model evaluation, multi-

formalism modeling framework (MFMF) 
 

 

1. Introduction 

Most of the existing modeling and simulation tools are dedicated to one or a limited 
number of predefined modeling or simulation languages. The witness of this claim is 
the information published in the Petri nets tool database available on [1]. The models 
constructed by these tools are not mostly interoperable with the models constructed by 
other tools, even if the models are based on the same modeling language. Usually, the 
main concern of developers is how to implement a tool for a new modeling language. 
As the best of our knowledge, there are few modeling tools, which are extensible for a 
new formal modeling language (or formalism) and new solution or simulation 
techniques. 

   On the other hand, the complexity of systems and their corresponding models is 
growing, so a single formalism is not enough for modeling the whole system. Therefore, 
we need a way to construct models that are composed of several sub models of diverse 
formalism types. Sometimes, parts of a model are previously constructed and can be 
reused to compose a new model. Obviously, this kind of model composition is rarely 
supported by the existing modeling tools. 

 
The above mentioned concerns have been the motivations and aims of developing a 

new multi-formalism modeling framework. We have adopted meta-modeling concepts 
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to propose a multi-formalism modeling framework (abbreviated by MFMF), which is 
flexible enough to support diverse formalisms and models in an integrated and unified 
modeling environment. We have used meta-modeling concepts in defining formalisms, 
models and model solvers. The concepts of object-orientation, such as abstraction, 
interfaces and encapsulation, are used to handle the complexities in the framework. 

In a previous paper [2], we presented the basic ideas and preliminary results of 
MFMF. In this paper, we present formal definitions, model composition and solution 
strategies of MFMF. We will also introduce a modeling tool we have developed based 
on MFMF and present some examples of the implementation of formalisms in the 
framework.  

The rest of this paper is organized as follows. In Section 2, we survey the related 
works. In Section 3, we present the meta-modeling structure of the proposed modeling 
framework, the formal definitions and model composition and solution strategies of the 
proposed modeling framework are given. In Section 4, some sample formalisms defined 
according to the framework rules are presented. In Section 5, we introduce a modeling 
tool we have developed to support the framework. Finally, some concluding remarks 
are mentioned in Section 6.  

2. Related Work 

There are many modeling and simulation tools, but most of them support a fixed and 
non-flexible model construction environment. On the other hand, some trends exist on 
introducing new approaches for developing multi-model multi-formalism environments. 
For example, Möbius [3], AToM3 [4] and OsMoSys [5] are multi-formalism modeling 
tools exist in the literature. Among them, OsMoSys is closer than the others to our work 
in using meta-models. It is intended to support multiple formalisms in a common 
framework. As the best of our knowledge, this framework does not have a complete 
formal definition. In [4], the framework is defined in a semi-formal manner with no 
support for definition of new formalisms. The OsMoSys solution approach is based on a 
new formal language, named SPDL, which forces a modeler to learn its quite complex 
syntax.  

The Möbius modeling tool is the result of another attempt to create a multi-
formalism framework. Its idea is based on defining an abstract function interface (AFI), 
which is a common application programming interface (API) for adding new 
formalisms to the framework and using its feature [6]. Although, Möbius has interesting 
features for model composition and solution techniques, adding a new formalism to the 
framework is not an easy task. Since its first version, which supported stochastic 
activity networks (SANs), performance evaluation process algebra (PEPA) [7] and 
MoDeST [21] are the only formalisms, which have been implemented in the Möbius 
modeling framework.  

On the other hand, AToM3 [4], uses meta-models to support modeling by different 
modeling languages. The tool does not offer model solution features, so the modeler 
should transform the models into DEVS formalism [8] and then apply DEVS solution 
techniques for evaluating models. Hence, the modeler cannot use original solution 
techniques for models, which may be more efficient and useful.  
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Other well-known modeling tools (e.g. CPN Tools [9]), do not support multiple 
formalisms and their extensibilities are mostly limited. Some multi-formalism tools, 
such as SHARPE [10], support a fixed set of formalisms, solvers and simulators. 

3. The Proposed Framework 

We start the definition of the proposed multi-formalism framework (MFMF) by 
introducing a meta-modeling structure. In the framework, the model related data are 
organized in four layers to add flexibility and scalability in MFMF. Figure 1 depicts 
these four layers and their interpretation in the framework. The first top layer (i.e. Layer 
0) is the most abstract layer. In this layer, models are considered as a collection of 
elements with some properties. We leave this layer more abstract to make the definition 
of diverse formalisms possible in the framework.  

 
Layer 1, elaborates the Layer 0 definitions by specifying the elements' names, types 

and properties. The elements can be of types Node, Edge or Model. The elements of 
Edge type should be connected to other elements of the type Node or Model. An 
element of the type Model represents a sub-formalism in a formalism definition. For all 
elements, extra information can be annotated by properties.  A formalism structure can 
be defined by formalism designer at this layer in the framework. 

 

 

Figure 1. The meta-modeling structure of MFMF 

 
Layer 2, includes the models derived from the formalism defined in Layer 1. Models 

in this layer are considered as a collection of instances of the elements defined for 
formalism in the previous layer. For more clarification, suppose the definition of a place 
in Petri nets [11] and a Petri net model with five places. The place element will be 
defined in Layer 1 and five instances of place will be defined in Layer 2. Commonly, it 
seems that the models in this layer should be final solvable models. But, we have added 
one more layer to increase the flexibility of the framework. Models defined in Layer 2, 
are considered as class-models and they can be instantiated many times in each 
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modeling study. Then, we need another layer as a concrete model layer, which is Layer 
3. Then, the models are ready to be solved by a solution manager in the framework. In 
Layer 3, models are instantiated. Each class-model of Layer 2 can be instantiated 
several times with different parameters. 

Having the above primary descriptions of the framework's meta-model structure, we 
continue to define these four layers' specifications formally for precise clarification of 
the mentioned concepts. 

 
Formal Definitions 

Now, we define the framework's meta-model structure formally. Firstly, we start to 
define some preliminary definitions. These definitions are necessary, since they are 
referred inside meta-model layers' definitions. We start by the definition of data 
structure. 

 
Definition 3.1. A data structure in MFMF is a function DS: PN → T, where PN is the 

unique name of a property (an element of the data structure) and T  {PRIMARY, 
ENUM, PDS, SET} is the type of the property, where: 
- PRIMARY={int, float, Boolean, String}, is the set of primary data types. 
- ENUM, is an enumeration type. 
- PDS, is a previously defined data structure. 
- SET, is a bag (or multiset) of the elements like W, such that:  

, { , , }DSw W w PRIMARY ENUM P∀ ∈ ∈
 

The above definition of data structure makes it possible to construct every data 
structure, which may exist in the definition of a formal language.  

Now, we continue with the definition of elements, which is a primary component of 
the formalism in MFMF. 

 
Definition 3.2. Each element of a formalism in MFMF is an 11-tuple: EF = (NE, ImgE, 

TE, FE, PE, CE, AE, ERE, IRE, StartE, EndE), where: 
- NE, is a unique name of the element. 
- ImgE, is a graphical representation of the element (provided to the related tool as a 

file in a standard graphics format). 
- TE {Node, Model, Edge}, represents the type of the element. 
- FE, is the formalism that the element belongs to. 
- PE: PN→T, denotes the properties of the element, where PN is the name of the 

property and we have: T  {PRIMARY, ENUM, CLASS, OBJECT, FUNCTION, 
SET}, where: 
o PRIMARY, is defined as in Definition 3.1. 
o ENUM, is an enumeration type. 
o CLASS, is s data structure, defined as in Definition 3.1. 
o OBJECT, is a reference to a data structure like CLASS, which is defined inside 

the class-model (as in the following Definition 3.5). 
o FUNCTION, is the 3-tuple (If, Of, Cf), where: 
§ Of  K, If=2K, where the former defines output type and the latter defines the 

input types, where K={PRIMARY, ENUM, CLASS, OBJECT, SET}.  
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§ Cf, is a constraint expression for the function defined in object constraint 
language (OCL) [12]. 

§ SET, is a bag of elements like W, containing all of the valid data structures 
defined inside FE. 

- CE, is the OCL expression defining the element's constraints. 
- AE, is the ancestor element, which is extended by the current element, defined as 

follows: 
{ . } . . .E E E EA K E where K F EFR T K ET∈ ∈ ∧ =  

- ERE  is a reference to an external model, such that: 
( ) : ( . )

:

E E E E

E

if T Model ER F EFR F

else ER

== ∈ ∪

= ∅  
- IRE is a reference to an internal element, such that: 

( . ) ( . )E E E FIR F E F E E∈ ∧ ≠ . 
- STARTE, ENDE are start and end nodes of the element where the element type is 

an arc, such that: 
( ) :

( ,  , 

{ | . . })

( )

:

E

E E

E E

E E

E E

if T edge

Start L End L

L e e F E e T Edge

Start End

else Start End

=

⊆ ⊆

⊂ ∈ ∧ ≠

∧ ≠

= = ∅  
 
In the above definition, the element type is defined by TE. As mentioned earlier, it 

can be of the type Node, Edge or Model. There are some properties for each element. 
The type of these properties may be PRIMARY, ENUM, CLASS, OBJECT, FUNCTION 
or a set of them. Class types are data structures defined inside the formalism's 
definition. If we define a property as an OBJECT type, we mean that this property refers 
to a class type that its definition is postponed to class-model layer. Simply, we can 
consider it like pointers or references in programming languages. Object type in 
MFMF's definition is useful in implementing some formalisms, such as coloured Petri 
nets (CPNs) [13] or coloured stochastic activity networks (CSANs) [14], where the 
modeler can define a new structure inside the model itself and then assign the type to 
coloured places. In some formalisms, such as SANs, CPNs and so on, there are some 
functions in the body of the formalism's definition. Definition of these functions as a 
property with the type of string is not precise. Since, we cannot define constraints. For 
clarity, suppose the input gate function in SANs, which can only change the marking of 
the nodes directly connecting to it. We need a way to express this constraint in 
formalism's definition in MFMF. We consider such a function as a property of the type 
FUNCTION and define its constraints using OCL [12]. The OCL expression in MFMF 
is written based on components and relationships depicted in Figure 2.  After defining 
an element in MFMF, we can present the formal definition of formalism, which is a 
collection of the elements of MFMF. 
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Definition 3.3. A formalism (or formal modeling language) F in MFMF is a 6-tuple 
F={N, Img, P, E, EFR, ADS}, where: 
- N, is a unique name for the formalism in MFMF context. 
- Img is a graphical representative of the formalism (provided to the related tool as 

a file in a standard graphical format). 
- P, is the properties of the formalism (defined as in Definition 3.1). 
- E, is a set of the formalism's elements, where E≠∅, E={E1, E2, …En}, where Ei is 

defined as in Definition 3.2. 
- EFR, are references to other defined formalisms in the context, which we may 

want to use their elements as an ancestor in the current formalism definition (EFR
2

FUMF). 
- ADS, is a collection of data structures defined inside the formalism according to 

Definition 3.1. 
 
Till now, we have defined the formalism in MFMF. Considering the above 

definition, we can summarize a formalism definition in MFMF in a unified modeling 
language (UML) like class diagram as shown in Figure 2. In this figure, it is clearly 
illustrated that the formalism can contain other formalisms, too. A formalism in MFMF 
is a collection of elements with some properties for each. Therefore, class-models are 
some instantiated elements from these elements including some elements of the node or 
model types, which are connected to each other by some elements of edge types. 

 

 
 

Figure 2. The meta-model of formalism definition in  MFMF as a class diagram 

 
Now, we present the definition of class-model. For this purpose, first we need to 

present some preliminaries. We define each element of the class-model formally and 
then provide a formal definition for the class-model itself. 

 
Definition 3.4. An element of a class-model, EMC, in MFMF is a 5-tuple EMC=(M, T, P, 

VI, A), where: 
- M, is the class-model that this element belongs to. 
- T, is the type of the element. It is one of the permitted types defined in the 

corresponding formalism of class-model of the element (T M.F.E). 
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- P={p1, p2, …, pn}, is the properties of the element. There is a bijective function1 
f:P→DT.P (DT.P is the domain of PE as in Definition 3.2), which enforce a one-to-
one relationship between P and DT.P, and P i is a 4-tuple (Ni, VAi, VIi, Ai), where: 
o Ni=f(pi).PN, is the name defined for the property in the formalism definition. 
o VAi, is the value of the property that should be compatible with the type of the 

property defined in the formalism definition (TYPE(VAi)= f(pi).T). 
o VIi {private, public}, is the property's visibility in the class-model.  
o Ai {ReadOnly, WriteOnly}, is accessibility modifier. 

- VI and A, define the visibility and the accessibility of the element, respectively, 
and their definitions are same as VIi and Ai. 

 
Now, we continue the MFMF's definitions by defining the class-model formally: 
 
Definition 3.5. A class-model, M, is defined as a 5-tuple M=(N, F, E, P, O), where: 
− N, is a name for the class-model. 
− F, is a reference to the corresponding formalism that the class-model is based on. 
− E, is the set of elements, each one defined as in Definition 3.4. 
− P, is the set of class-model properties P={p1, p2, …, pn}, and there is a bijective 

function like g:P→DT.P (DT.P is the domain of P as in Definition 3.3) which apply 
a one-to-one relationship between P and DT.P, and  pi is a 4-tuple (Ni, VAi, VIi, Ai),  
where: 
o Ni, is the name of the property(Ni=g(pi).PN) 
o VAi, is the value of the property. It should be compatible with the type of the 

property defined in the formalism definition (TYPE(VAi)= g(pi).T) 
o VIi, Ai, are defined as in Definition 3.4. 

− O, is a data structure defined as in Definition 3.1. 
 
According to the above definitions, it is obvious that the class-model itself may have 

some properties same as its elements. It means the extra information can easily be 
annotated to the elements of the class-model or to the class-model independently. In 
Section 4, we will present some sample formalism definitions in MFMF to demonstrate 
these definitions' applicability in defining different formalisms in the framework. 

 
Model Composition and Solution Strategies 

It is possible to define various composed models in the framework. We will define its 
possibility in the formalism definition of MFMF. For example, we can define 
hierarchical stochastic activity networks (HSANs) [16] or Petri nets formalism 
composed of CPNs or SANs as submodels. A submodel in a composed model is 
connected by an arc to at least one container node or to another submodel. Semantics of 
this connection is defined by means of a relation function written in a high-level 
programming language (e.g. Java). This function defines how the values in a submodel 
can be affected by the values in the container model and vice versa. Defining 
communication by using a programming language between the container model and its 
submodels makes the relationship more flexible. The relation function is executed by 
the solvers of MFMF. We define a relation function formally as follows. 
                                                           
1. simultaneously injective and surjective 



 

A Multi-Formalism Modeling Framework:… H.M Gholizadeh, M. Abdollahi Azgomi 
 
 

54 

Definition 3.6. A relation function for an edge, E, which connects A (a submodel 
element) to B (another submodel element), is a function like RE: V1→V2, such that: 

1 { . | ( . ( . | . )) . . }
        { . | ( . ( . | . )) . . }

( 2) ( 1)

i i i

i i i

V pVA p AP e p e AE p A ReadWrite p VI public
p VA p B P e p e B E p A ReadWrite p VI public

TYPE V TYPE V

= ∈ ∪ ∈ ∧ = ∧ = ∪
∈ ∪ ∈ ∧ = ∧ =

=

 

 
Definition 3.7. A relation function for an edge, E, which connects A (a simple (non-

submodel) element) to B (a submodel element) is a function like RE: V1→V2, such that: 
1 { . | . . }

        { . | ( . ( . | . )) . . }
( 2) ( 1)

i i

i i i

V pVA p AP p A ReadWrite
pVA p B P e p e B E p A ReadWrite pVI public

TYPE V TYPE V

= ∈ ∧ = ∪
∈ ∪ ∈ ∧ = ∧ =

=

 

 
According to the above definitions, the relation function can change the values of the 

properties of the connected elements. If two submodels connected by an edge with the 
relation function, their ReadWrite public properties can be affected by that function 
during the solution phase. If one end is a simple element, then its properties can be 
affected as well. 

The execution and manipulating the property values is the task of the solution 
manager. In the previous section, we defined the strategy of MFMF for defining 
structure of a formalism in the framework, though we did not mention how MFMF 
handles the behavior or the execution rules of the formalism. The solution manager 
alongside some solvers is responsible for the formalism's execution rules inside the 
framework. They execute models and generate desired results out of the solution 
procedure, according to the formalism's execution rules and the relation functions. The 
solution manager is aware of the relation functions and the solvers know about the 
formalism execution rules. As well as most collaborative systems, a manager (i.e. the 
solution manager) orchestrates all solver components to solve the mode. The solution 
manager synchronizes the solvers and manages the data communication between the 
container model and its submodels. 
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Figure 3. Framework of the solver system 

 
Figure 3 depicts a general view of the architecture of the solution system. The system 

includes Native and Non-Native Solvers, Adapters, Initializer, Result Manager, Solution 
Manager and the framework's resources. We comment briefly on each of these parts 
and discuss their roles in the solution process.  

The solvers may be implemented exclusively for the framework or external solvers 
may be employed. We call the former series, native solvers and the latter series, non-
native solvers. For adapting non-native solvers into the framework, we use some 
adapters. These adapters force the external solvers to support some important 
functionalities like taking the care of the relation functions, execution, stopping and 
resuming of the model execution during the solution phase.  

Initializer includes Solver Initializer and Model Initializer. The former should 
initialize and prepare the necessary Native or Non-Native Solvers for collaborating in 
the solution process. Model Initializer initializes and prepares the models and 
submodels' parameters to make a concrete model ready for execution. The values for the 
parameters may be provided by the user. 
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Result Manager asks for the desired results from the user by providing a suitable user 
interface. The requested results of the solution can be separated into two parts. They 
may be directly related to some values of the model or submodels' properties, or they 
may be generated by executing predefined functions. Before execution process, Result 
Manager generates the Result Definition Documents (RDDs) to deliver to the solvers. 
These documents tell the solvers the values of the interested properties.  

Solution manager gets the initialized model files and separates them into Model Pure 
Documents (MPDs). MPDs are documents containing the submodel's information. For 
each submodel one MPD is generated in addition to one sole MPD for the container 
model. These MPDs include the information of only one submodel and will be 
delivered to the solvers. Their contents are suitably annotated to completely meet the 
solution process integration requirement as done collaboratively by the solution 
manager and other solvers.  

4. Sample Formalisms Described in the Framework 

In this section, we show how we can formally describe Petri nets, generalized 
stochastic Petri nets (GSPNs) [17] and hierarchical stochastic activity networks 
(HSANs) as sample atomic and composed formalisms in MFMF. We describe these 
formalisms based on the formal definitions presented in Section 3. 

 
a. Descriptions of Petri Nets and GSPNs 

In this section, we describe Petri nets in MFMF according to its formal definition 
[11]. Petri nets are consisting of three basic elements including place, transition and arc. 
Each instance of these elements may have a caption. A place may contain some tokens. 
The caption and the tokens can be shown, by a string and an integer, respectively, as the 
properties of the element. A Petri net model can be described in MFMF as the 
following: 

 
Definition 4.1.  A Petri net in MFMF is described as follows: 

{ , , , , , }
     " "
     
     { , , }
     

T

Petrinet

P Arc

F N Img P E EFR ADS
N petrinet
Img = "img / petrinet.svg"
E E E E
P EFR ADS

=
=

=
= = = ∅

 

where each element is described as below: 
{ , , , , , , , , , }

     " ", " / . ",

     , {(" ", " "), (" ", " ")}
     

,E N Img T F P A ER IR C SP
N place Img img place svg F

T Node P token int caption String
A C ER IR S

tart End
F petrinet

tart End

=

= = =

= =
= = = = ∅= =

 

{( )}

 

{ , , , , , , , , , , }
     " ", " / . ",
     , " ", " "
           ,

T S

Spetrinet

E N Img T F P A ER IR C tart End
N transition Img img transition svg
T Node P caption String

A C ER IR tart EndF F

=
= =
= =

= = = = = = ∅=
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{ , , , , , , , , , , }
     " ", " / . ",
     , {(" ", " ")}
     { } { }
     context  inv:
            (self. .

,   ,

Arc

petrinet

p T p T

Arc

SE N Img T F P A ER IR C tart End
N arc Img img Arc svg F F
T Edge P caption String
Start E E End E E
C E

Start N pla

=
= = =

= =
∈ ∈

=
=  implies self. . ) and

            (self. .  implies self. . )
     

ce End N transotion
Start N transition End N place

A ER IR

=
= =

= = = ∅

 

 
The OCL expression defined for the arc element in Definition 4.1 implies that each 

arc can connect a place to a transition and vice versa. Then, a place (respectively, a 
transition) cannot be connected to another place (respectively, a transition) directly. The 
formalism in MFMF can be defined by extending the previously defined formalism in 
the context. Then, according to this concept, we will describe GSPNs. This description 
is based to the formal definition of GSPNs [17]. 

  
Definition 4.2. We describe GSPNs in MFMF as below: 

{ }

GSPN

P TT IT Arc

petrinet

F = {N, Img, P, E, EFR,O,C}
N = "GSPN" Img = "img / GSPN.svg"
P = C = O = E = {E , E , E , E }
EFR F

∅
=

 

, ,P

petrinet P GSPN

S

S

E = {N, Img,T, F, P, A, ER, IR,C tart End}
N = "place", Img = "img / place.svg",
T = Node, A= F .E F = F
P = ER = IR = C = tart End= = ∅

 

{ }

{( ( )}

, , , , , , , , , ,
     " _ ",
     " / _ . ",
     , . ,
     " ", , " ",
          context 

TT

GSPN

petrinet T

S

rate
rate

E N Img T F P A ER IR C tart End
N timed transition F F
Img img timed transition svg
T Node A F E
P rate Function float C

C E

=
= =

=
= =
= ∅

=  post: self . ( @pre)
     

TT
S

F forAll E E
ER IR C tart End

− > =
= = = = = ∅

 

{ , , , , , , , , , , }
     " ", " / . ",
     , , . ,
     {(" ", " ")},     

GSPN

IT

petrinet T

S

S

E N Img T F P A ER IR C tart End
N itransition Img img itransition svg
F F T Node A F E
P selProb float ER C IR tart End

=
= =
= = =

= = = = = = ∅

 

{ , , , , , , , , , , }
     " ", " / . ",
     , .
     { } { }, ,   , ,

GSPN

Arc

petrinet Arc

p TT IT p TT IT

SE N Img T F P A ER IR C tart End
N Arc Img img Arc svg F F
T Edge A F E
Start E E E End E E E

=
= = =
= =

∈ ∈
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context  inv: 
let : =self. , : =self.  in

           ( .  implies ( .  or 
                                                . _ )) and
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=
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According to the formal definition of GSPNs, there are two types of transitions: 

timed and immediate, which are respectively named timed_transition and itransition in 
the above descriptions. These elements alongside the place element inherit their 
descriptions from the elements of Petri nets as in Definition 4.1. The rate of each timed 
transition is defined as a property of the type FUNCTION. The post-condition for this 
function guaranties no change on any elements of the model. The definition of arc in 
GSPNs is defined same as Petri nets and can possibly connect the permitted elements to 
each other. 

 
b. Descriptions of HSANs  

HSANs are an extension of SANs formalism supporting hierarchical models in their 
definition [16]. Here, we demonstrate how we can describe HSANs as a sample of 
composed formalism in MFMF. We omit the descriptions of some elements for brevity. 

 
Definition 4.3. HSANs in MFMF is defined as follows: 
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For brevity, we only define , ,IG SubSAN SubSANArcE E E . The descriptions of other 
elements are straightforward. 
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In the above definition, SubSANArcE has a property named RefFun. As we discussed 

previously, this is a special property that defines how a submodel is connected to a 
container model in a composed model. In the formal definition of HSANs, the 
relationship of submodels with the container model is simply defined by fusion places 
[16], but by the relation function strategy, there is more options than just simple 
mapping between fusion places. Here, the constraint for the relation function is defined 
as default. It means that the default constraint is previously defined in the relation 
function definition. Then, we avoid redundancy in defining it in all relation functions 
unless we want to specify extra constraints for that. IG represents Input Gate and has 
two property of the type FUNCTION, consequently defining guard and gate functions 
of the element. The guard function cannot change the state of the model and the gate 
function can only change the token properties of the places directly connected to the IG 
element. These constraints for the function are defined in OCL expressions, too. 

5. A Tool for the Framework 

A modeling framework needs a supporting tool. We have implemented a tool for 
MFMF to support its features. Some snapshots of the tool are shown in Figure 4 through 
6. Extensible markup language (XML) is an infrastructure for storing all kinds of data, 
including formalism definition, class-model definition, transient data between solvers 
and solution manager and so on in our framework. Using XML simplifies importing the 
models that are not defined exclusively for the framework using the MFMF tool.  
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Figure 4. A sample SAN model in the GUI of the MFMF tool  

 

 
Figure 5. A producer/consumer model in the MFMF tool  

 

 
Figure 6. The formalism definition wizard of the MFMF tool 
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By implementing a simple extensible stylesheet language transformation (XSLT) 
document, the models compatible with Petri net markup language (PNML) [18] can 
easily be adapted by the framework. However, we have used scalable vector graphics 

(SVG), which are XML-based images for representing the images inside the MFMF 
tool.  

We have used Java programming language and JavaEE [19] features in the 
implementation of the MFMF tool. Its design is based on the model-view-controller 
(MVC) model [20], since it should be an interactive and event-driven application. We 
have exploited Java Reflection API to manipulate meta-data layers dynamically. Then, 
after defining new formalism, which is provided by using a wizard, it generates 
necessary XML files, compiles and deploys necessary Java class files and makes new 
defined formalism accessible inside the framework without a need to recompilation of 
the tool or even restarting the tool. By using Java native interface (JNI), we have 
implemented adapters that can communicate external implemented solvers in other 
languages. Other features of JavaEE let us to distribute solution process over computer 
networks, too. The tool is so customizable that one can easily switch between different 
defined formalism for making a composed model.  

6. Conclusions 

In this paper, we introduced a meta-modeling approach in defining a new multi-
formalism modeling framework (MFMF). Using four abstract layers for organizing the 
framework's data structure and using object-oriented techniques in its definition makes 
the framework flexible, scalable and interoperable. Therefore, the framework is 
extensible by a large number of formalisms. The innovative approach in defining a 
framework for diverse formalisms provides an infrastructure for defining a unified 
modeling environment for constructing atomic models or homogeneous or 
heterogeneous composed models. A new method named relation function is proposed 
for the composed models to handle communications between models and submodels. 
Object constraint language (OCL) expressions are used in the framework's structure to 
precisely define formalisms. We illustrated the applicability of the framework by 
defining some sample formalisms using features of the framework. We discussed the 
techniques for implementing a tool for the framework, too.  

In future, we intend to continue the work by completing the implementation of the 
tool for the framework. Also, we will introduce a method for formal description of the 
solution techniques in the framework.  
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