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Abstract 
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general 

and difficult of all traditional scheduling problems. The Flexible Job Shop Problem 
(FJSP) is an extension of the classical job shop scheduling problem which allows an 
operation to be processed by any machine from a given set. The problem is to assign 
each operation to a machine and to order the operations on the machines, such that 
the maximal completion time (makespan) of all operations is minimized. The 
scheduling objective minimizes the maximal completion time of all the operations, 
which is denoted by Makespan. The goal of this research is to develop an efficient 
scheduling method based on Gravitational local search algorithm to address FJSP. 
we could reduce scheduling time and costs by transferring and delivering operations 
on existing machines, that is among NP-hard problems. Different methods and 
algorithms have been presented for solving this problem. Having a reasonable 
scheduled production system has significant influence on improving effectiveness 
and attaining to organization goals. In this paper, we design algorithm were 
proposed for flexible job shop scheduling problem (FJSP-GSA), that is based on 
Gravitational search algorithm (GSA). The experimental results showed that the 
proposed method has reasonable performance in comparison with other algorithms. 
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1. Introduction 

Scheduled production system leads to avoiding stock accumulations, losses 
reduction, decreasing or even eliminating idol machines, and effort to better benefitting 
from machines for on time responding costumer orders and supplying requested 
materials in suitable time. 

Classic job shop scheduling production systems contain N independent job on M 
machines. Each job includes one or more operations that must be implemented 
sequentially. Each operation needs specific process time. Flexible job shop scheduling 
production system is specific type of classic job shop scheduling production systems, in 
which one job could be implemented on set of machines. 

Purpose of scheduling this problem is determining operation sequence for each 
machine, such that sequence order is kept and total time of operation (during 
implementing one job) be minimized. 

In this paper, FJSP-GSA algorithm based on Gravitational local search is proposed 
for scheduling time optimization in FJSP. 
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Gravitational searching algorithm and proposed solution have been presented to 
made suitable time for implementing several operations on one job, which in fact is 
assigning proper machine to related operation. 

2. Related work 

Flexible job shop scheduling production system is one of the most important 
combined optimizing problems. The JSP is not only NP-hard, but it is one of the worst 
members in the class. An indication of this is given by the fact that one 10 * 10 problem 
formulated by Muth and Thompson [1] remained unsolved for over 20 years. 

The job-shop scheduling problem (JSP) has been studied for more than 50 years in 
both academic and industrial environments and also recently, many researchers have 
been done for the flexible job-shop scheduling production system (FJSP). 

Bruker and Schlie et al [3] who first considered this problem, offered a multilateral 
algorithm for solving flexible job shop problem with two jobs. In real world, for solving 
a problem with more than two jobs, two perceptions have been used: hierarchical 
perception and integrated perception. 

In hierarchical perception assigning any operation to the machines and determining 
operation sequences are performed individually. In other words, assignment and 
sequence determination are independent. But in integrated perception, sequence 
determination is based on this idea that in order to decreasing complexity, main problem 
should be decomposed into two problems called assignment and sequence 
determination. As this perception decomposes into two problems of assignment and 
sequence determination, is used more. Brandimarte et al [2] was the first one who used 
this perception for FJSP. He specified path determination with distribution rules and 
then focused on solving scheduling problem with TS algorithm. 

Jain and Meeran et al [7] provided a concise overview of JSPs over the last few 
decades and highlighted the main techniques. The JSP is the most difficult class of 
combinational optimization. Garey et al [8] demonstrated that JSPs are non-
deterministic polynomial-time hard (NP-hard); hence we cannot find an exact solution 
in a reasonable computation time. The single objective JSP has attracted wide research 
attention. Most studies of single-objective JSPs result in a schedule to minimize the 
time required to complete all jobs, i.e., to minimize the make span. Many approximate 
methods have been developed to overcome the limitations of exact enumeration 
techniques. These approximate approaches include simulated annealing (SA) [9], tabu 
search [10-12]  and genetic algorithms (GA) [13-15]. 

Fattahi, Saidi, Jolai [5] have considered hierarchical and integrated perceptions in 
relation to scheduling job shop production systems. They based on these perceptions 
and two SA and TA heuristics offered six combined algorithms and compared them. 
The concluded that combined algorithms from SA and TA along with hierarchical 
perception would provide better solutions than other algorithms. Te also offered in their 
article a new technique for introducing structure of solution in scheduling flexible job 
shop production problems. 

Choi and Choi et al [4]  have presented a local searching algorithm for scheduling 
job shop production problems. They regarded that there is possibility of a substitute 
operation for any operation. In this mode, for all operations a machine and process time 
are assigned and then, for some operations considered substitute machine and process 
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time. Moreover, a run time has been considered for any operations, which is depended 
to the last operation. 

In this study, we first considered problem with primary process and ignored 
substitute process, and regarded flexibility and obtained construction duration have been 
used as upper boundary. Then, local searching procedure is looking for better solution 
by using distribution rules. In this study, different distribution rules in local searching 
procedure have been considered. 

Xia and Wu et al [6] have presented a hybrid optimizing perception for scheduling 
multi object flexible job shop production system problems. In their study, combination 
of two methods SA and particle swarm optimization have been used for optimizing 
flexible job shop production system problem. PSO algorithm is applied for assignment 
problem either for determining any operations use which machine. Value of object 
function is calculated b SA algorithm and implemented for each particle in PSO 
algorithm once. 

Mastrolilli and Gambardella et al [17] proposed a tabu search procedure with 
effective neighborhood functions for the flexible job shop problem. Many authors have 
proposed a method of assigning operations to machines and then determining sequence 
of operations on each machine. Pezzella et al [18] and Gao et al [19] proposed the 
hybrid genetic and variable neighborhood descent algorithm for this problem. There are 
only a few papers considering parallel algorithms for the FJSP. Yazdani et al [20] 
propose a parallel variable neighborhood search (VNS) algorithm for the FJSP based on 
independent VNS runs. Defersha and Chen et al [21] describe a coarse-grain version of 
the parallel genetic algorithm for the considered. FJSP basing on island model of 
parallelization focusing on genetic operators used and scalability of the parallel 
algorithm. Both papers are focused on parallelization side of the programming 
methodology and they do not use any special properties of the FJSP. 

The rest of the paper is as following: First, problem analyzing and in second section, 
its disjunctive graph model are presented. In section third, gravitational searching 
algorithm is explained and finally in section four, we explain proposed solution by 
using gravitational searching algorithm. 

3. Flexible Job-shop Scheduling Problem 

The FJSP can be an extension of the classical JSP; therefore, we can formulate the 
FJSP based on JSP. Consider a set of n jobs, noted J={J1, J2 ,....Jn} , every job in the 
set J has a given number operations, and should be operated on a given machine from a 

machine set named M={M1,M2 ,....Mm} . So, there are n jobs and m machines. In the 
classical JSP problem, with n jobs and m machines, there are n *m operations. However, 
in FJSP problems, the operation number can vary with the problem assumption. There 
are two kinds of FJSP, i.e., TFJSP and P-FJSP. For the T-FJSP, each job can be 
operated on every machine from the set M; for the P-FJSP, there is a problem constraint 
for the operating process, in table 1, we can see that one operation of a job must be 
processed by a set of machines in M' ⊆ M . In the sequencing stage for the FJSP, we 
must consider the candidate machine set size for every operation waiting for processed. 

The detailed definition of the FJSP as follows: 
• A set of J independent jobs. 
• Each job Ji can be operated on a given set of machines Mi . 
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• The Oi, j represents the jth operation of Ji . The machines set waiting for processing 

the Oi, j noted byMk ⊆ M . 
• We use pi, j,k to represent the processing time of Oi, j operated on the kt machine. 

There have two assumptions: a started operation cannot be interrupted; each machine 
only can process one operation at the same time. 

The objective in our paper is to find the minimum time of the whole operations. 

4. Disjunctive Graph 

Disjunctive graphs are a well-known modeling concept for job-shop scheduling and 
related machine sequencing problems. In a disjunctive graph the nodes correspond to 
the operations to be scheduled and the weighted arcs represent precedence constraints 
between pairs of operations. A conjunctive arc (i, j) expresses the condition that 
operation i must precede operation j, while a pair of disjunctive arcs (i, j), (j, i) 
expresses the condition that i must precede j or vice versa. Disjunctive arcs result from 
the fact that two operations I and j on the same machine cannot overlap in time. Since 
there is a one-to-one correspondence between feasible semi-active schedules and 
feasible selections in a disjunctive graph, an optimal schedule minimizing makespan 
can be found be determining a feasible selection that minimizes the length of a longest 
path in the associated graph. 

A distinctive property of disjunctive job-shop graphs is that each pair of disjunctive 
arcs contains two arcs with identical extremities but reverse orientation. We introduce a 
generalization of the classical disjunctive graph concept, allowing pairs of disjunctive 
arcs with different extremities. This generalization allows modeling a variety of 
sequencing problems in manufacturing and logistic systems. We consider in particular a 
version of the job-shop problem characterized by sequence-dependent set-up times and 
no buffers between machines. 

As a main result, we show that the feasibility problem for generalized disjunctive 
graphs - in contrast to the feasibility problem in the job-shop case - is NP-complete. The 
feasibility problem addresses the question of whether a generalized disjunctive graph 
has a feasible selection, i.e. a complete, positive acyclic selection of disjunctive arcs. 
The proof is based on a polynomial-time reduction of the SAT-problem to the feasibility 
problem. We also discuss some implications of this complexity result on the design of 
solution methods. 

As a second extension of the classical disjunctive graph model, we discuss the 
introduction of arbitrary arc weights. Non-positive arc weights allow to describe various 
types of conditions typical for scheduling problems, such as due dates, limitations on 
total duration of some operations, synchronization and no-wait constraints. We address 
the feasibility problem for disjunctive graphs with arbitrary weights. Summarizing some 
existing results, we show that the complexity of the feasibility problem depends only on 
the conjunctive part of the graph: if it is acyclic, there exists a feasible selection; if it has 
a cycle of positive weight, there is no feasible selection; if it has a cycle of non-positive 
weight, deciding on feasibility is NP complete. 

5. Gravitational Search Algorithm (GSA) 

In GSA, optimization is done by using gravitational rules and movement rules in an 
artificial discrete-time system. 
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System area is same as problem definition area. According to gravitational rule, act 
and state of other masses are recognized through gravitational forces. So, this force 
could be used as a tool for transferring information. We can also use proposed solution 
for solving any optimization problem which within it any answers of problem is 
definable as a state in space, and its degree of similarity with other answers of problem 
is mentioned as a distance. Value of masses in each problem is also mentioned in 
regards to purpose function. In first step, system space is determined. Area includes a 
multi-dimensional coordinated system in problem definition space. Each point in space 
is one of the answers of problem and search factors are also series of masses. 

Each mass has three properties: 
a) mass state,  b) gravitational mass, c) Inertia mass. 
Abovementioned masses are resulted from active gravitational mass and Inertia 

mass concepts in physics. 
In physics, active gravitational mass is criteria of degree of gravitational force around 

a body, and Inertia mass is criteria of body resistance against movement. These two 
properties could be not equal, and their amounts are determined base on suitability of 
each mass. Mass state is a point in space which is one of problem answers. After 
forming system, its rules are determined [23-24]. 

We suppose that only there are only gravity rule and movement rule. Their general 
forms are similar to nature rules and have defined as below: 

Gravity Rule): Any mass in an artificial system attracts all other masses toward itself.  
The value of this force is proportional with gravitational mass of related mass and 
distance between two masses. 

Movement Rule): Recent speed of each mass is equal to sum of the coefficient of last 
speed of that mass and its variable speed. Also, acceleration or variable speed is equal to 
delivered force on mass, divide on amount mass. 

In following, we explain principals of this algorithm: Suppose that there is a system 
with S masses and within it, state of mass i-th  is defined as relation (1), where x 
denotes position of mass i-th in dimension d  and n denotes number of dimensions in the 
search space. 

( )1 d D
i i i iX  x , , x , , x= … …  (1) 

Worst (t) and best (t) are for minimization problems and are calculated with relations 
(2) and (3). (For maximization problems is just enough to consider the inverse of these 
two relations). 

( ) ( )Best t  max      tjfit=  (2) 

j∈{1,…,m} 

( ) ( )worst t  min      tjfit=  (3) 

j∈{1,…,m} 
We can account fitness of recent population with relation (4), and obtain mass of 

factor i-th in time t (i.e. with relation (5)), where M and fit are denote mass and fitness 
of factor i-th in time t, respectively. 

qi(𝑡𝑡) = 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝑡𝑡)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑡𝑡)− 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝑡𝑡)

 (4) 
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M(𝑡𝑡) = 𝑞𝑞𝑖𝑖
∑ (𝑡𝑡)𝑠𝑠
𝑗𝑗=1

 (5) 

In this system, force F is delivered on mass i-th from mass j-th in time t in the 
direction of dimension d, which value of this force is obtained base on relation (6), And 
in relation (6), G(t) is gravity constant in time t  which is regulated in the beginning of 
operating algorithm, and is decreased by the time. 

Fij
d(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)×𝑀𝑀𝑗𝑗 (𝑡𝑡)

𝑅𝑅𝑖𝑖𝑖𝑖 (𝑡𝑡)+𝜀𝜀
 ( 𝑋𝑋𝑗𝑗𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑖𝑖𝑑𝑑(𝑡𝑡)) (6) 

R is ECLIDIAN distance between factor i-th and factor     j-th that is defined as 
relations (7),”  ” is also a small value for avoiding denominator from becoming zero. 

ij = �(𝑋𝑋2 − 𝑋𝑋1)2 + (𝑌𝑌2 − 𝑌𝑌1)2 + (𝑍𝑍2 − 𝑍𝑍1)2 + ⋯+ (𝑛𝑛2 − 𝑛𝑛1)2 (7) 

The force delivered on mass i-th in direction d  at  time t is equal to resultant of  total 
force from k superior mass in population (k is better factor than recent factor). Kbest 
denotes series of k superior masses in population. K value is not constant and is defined 
as a time-dependant value, such that all masses at the beginning   influence on each 
other and deliver force, but by passing time, number of effective members in population 
is decreased linearly. And for accounting sum of delivered forces on mass i-th in 
dimension d, we could write (8). In this relation, rand is a random number with normal 
distribution in the interval [0,1]. 

Fi
d(𝑡𝑡) = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 × 𝐺𝐺(𝑡𝑡) 𝑀𝑀𝑗𝑗 (𝑡𝑡)×𝑀𝑀𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑖𝑖𝑖𝑖 (𝑡𝑡)+𝜀𝜀𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ,𝑗𝑗≠𝑖𝑖 ( 𝑋𝑋𝑗𝑗𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑖𝑖𝑑𝑑(𝑡𝑡)) (8) 

According to Newton's second movement rule; each mass takes acceleration in the 
direction of dimension d, which is proportional with delivered force on that mass, and 
has mentioned in relation (9). 

ai
d(t) = Fi

d (t)
Mi (t)  → (9) 

ai
d(t) = � rand j × G(t)

Mj(t) × Mi(t)
Rij (t) + ε

jϵkbest ,j≠i

( Xj
d(t) − Xi

d(t)) 

And speed of each mass is equal to sum of coefficient of mass recent speed and 
acceleration, and is explained as relation (10). In this relation, rand is a random number 
with normal distribution in the interval [0,1], and its random property is resultant of 
keeping search in random mood. 

Vi
d (𝑡𝑡 + 1) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 × 𝑉𝑉𝑖𝑖𝑑𝑑(𝑡𝑡) + 𝑎𝑎𝑖𝑖𝑑𝑑(𝑡𝑡) (10) 

Now, mass should moves. It is obvious that more speed of the mass, cause more 
movement in that dimension. New state of factor i-th is mentioned by relation (11). 

Xi
d(𝑡𝑡 + 1) = Xi

d (𝑡𝑡)𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) (11) 

At the beginning of forming system, each mass (factor) is randomly positioned in 
one point of space that is an answer of problem. In each moment, masses are evaluated 
and then changing in the position of each mass is calculated after solving relations 8 to 
11. System parameters are updated in each stage (G, M). 
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Stop condition could be determined after passing specified time. In Figure 1, semi-
code of this algorithm has been presented: (Rashedi and Nezamabadi-pour and Saryazdi 
et al,2009). 

 
 

 
 

Figure 1. semi-code of Gravitational Search Algorithm 

6. Proposed Method Based on Gravitational Search Algorithm (FJSP-GSA) 

Regarding to gravitational searching algorithm, each searching factor should be 
contain information for solving problems. This information says that for example each 
factor in any time might be aware that in each point of searching space, which operation 
is implementing on which machine. According to problem definition, we could consider 
a table like below table that in it, each operation is implementable on set of machines. 
But in any time, only one job is implemented on each machine, and then next operation 
should be implemented. 

 
 
 
 

determining system area and initial valuing 

 
initial positioning the masses 

evaluating masses 

 
updating parameters G, best, worst and M 

 
calculating  delivered force on each mass 

accounting acceleration and speed of each mass 

updating position of masses 

if stop condition 
doesn’t meet, go to 

phase3 

 

Return best solution 

NO 

YES 
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Table 1. Example of an job with 4 actions on 4 machines 

 A1 A2 A3 A4 
M1   ██  
M2 ██    
M3  ██   
M4    ██ 

 
You could see with some attention that above table is similar to N-minister problem 

table that in each column is placed just one minister (one job for each machine). The 
only difference is that in new table maybe several jobs are implemented on each 
machine. 

To brief this table we use One-dimensional array and we assign to each factor in 
searching space. 

It is obvious that each house of this array is assigned to one column of table, and 
value of that house states number of machines that related job would be implemented by 
them. For example, second house of below array indicates that second job (in second 
column) would be implemented on third machine. 

In gravitational searching algorithm, each factor in searching space includes a one 
dimensional array which keeps summary of recent state of implemented operations on 
related machines. So, with having five masses, in fact five searching factors are applied 
for finding purpose state (minimum time for performing operation). 

To indicate that bigger mass has better state, we should subtract total time of 
implementing an operation from a constant value (this value could be maximum 
required time for implementing a job which counts as a constraint). Result answer of 
this subtraction is qi, conforming with formula (4). Now if base on formula (5), we 
divide fitness of one factor on sum of factors fitness, mass factor is attained. 

Accounting delivered force, acceleration, speed and position of each mass are 
depended on dimension of each mass, and they are independent of each other. 

Consider a two-dimensional space. If there are two masses in one column during 
applying calculations on dimension X, calculations should be stopped, since second 
mass doesn’t deliver force on first mass in direction of dimension X. 

For example, in Figure 2, you see that two masses     (A and B) are placed in one 
column, so they don’t deliver force in direction of dimension X on each other. 

And similarly, two masses C and D are placed in one line, and so don’t deliver force 
on each other in direction of dimension Y. But pair masses (B,C), (B,D), (C,D), (A,D) 
are delivered force on each other in both directions of dimensions X and Y, and so 
calculations are applied on them completely. 
 

 
 

Figure 2. Two-dimensional space with 4 masses 

A C 

B 
D 
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Therefore, in first condition, we investigate un-parallelism of two masses in 
interested dimension. Then in order to account sum of delivered forces on related mass, 
we need to determine forces delivered from those masses which are placed in Kbest 
series. 

Kbest array is filled with initial value of (-1). According to gravitational algorithm, at 
the first moment of operating algorithm, all masses deliver force on each other. After 
assessing first condition, we add number of masses to Kbest series (Figure 3). 
 

for (byte j = 0; j < j_num; j++) 
K_best[j] = -1; 
for (byte i = 0; i <= mass_num; i++) 
{ 
if (Loc_arr[0, i] >= n) 
Loc_arr[0, i] = n; 
if (Loc_arr[1, i] >= n) 
Loc_arr[1, i] = n; 
if (Loc_arr[0, k] != Loc_arr[0, i]) 
{ 
for (byte j = 0; j < mass_num; j++) 
if (K_best[j] == -1) 
{ 
K_best[j] = arr[Loc_arr[0, i], Loc_arr[1, i]]; 
break; 
} 
} 
} 

Figure 3. calculating K_best 

It is obvious that according to gravitational algorithm, in next moment, we should add 
the condition of “being masses heavier” to the first condition, i.e. in addition to 
condition of un-parallelism of masses, those masses which are heavier than recent 
masses, should be added to Kbest  series. 
Now, we could write calculations as follow: 
 

while ((K_best[l] >= 0) && (number <= mass_num)) 
{ 
R = Math.Sqrt((Math.Pow((Loc_arr[0, k_best_T] – 
Loc_arr[0, k]), 2) + Math.Pow((Loc_arr[1, k_best_T] – 
Loc_arr[1, k]), 2))); 
F_arr[0, k] = F_arr[0, k]+((rand_obj.Next(100) / 
100.0) * G * (Math.Abs((hiu_mass[k_best_T] - 
hiu_mass[k])) / 
(R + E))* Math.Abs(Loc_arr[0,k_best_T] - 
Loc_arr[0,k])); 
} 
A_mass = F_arr[0, k] / hiu_mass[k]; 
V_arr[0, k] =((rand_obj.Next(100)/100.0)* V_arr[0, k]) 
+ A_mass; 
x_temp= (Loc_arr[0,k] + Math.Round(V_arr[0,k])); 

Figure 4. calculating for each masses 



 

Optimality of the flexible job shop scheduling … B. Barzegar, H. Motameni 
 
 

10 

New positions of mass, has been specified. And it is obvious that researcher factor 
should have new state and finally new mass in new position of search space. But how 
these changes in state and mass should be created? 

In proposed solution, we divide state array on N-dimensions of search space, i.e. for 
each dimension, we assign some houses to state array. 

For example, we would have a state array with six houses and a three-dimensional 
search space, where we assign two houses for dimension X and two houses for 
dimension Y and two houses for dimension Z (Figure 5). 

 
2 3 1 7 8 6 

 
dimension X                                     dimension Z 

dimension Y 
Figure 5. state array and dimensions 

 
Attention that order of assigned dimensions to the houses are arbitrary, but with  

change in position of factor in search space, movement is determined in direction of 
related dimension, and only corresponding cells with that dimension may be change in 
state array, and other values remain constant. So factors could move in direction of their 
corresponding dimensions. 

Way of changing values is important, and is explained as follow: 
When a factor starts to move in one direction, we divide each corresponding value 

with related dimension on distance, then by calling neighborhood function, we specify 
that by replacing which value in state array total spent time would be decreased and 
corresponding mass found better state. 

If in searching space is reminded just one mass, search is finished and with 
considering existing number of reminded mass (best mass) in array, list of machines is 
presented for processing reminded operations of one job in order to minimizing time 
production. 

For instance, follow array shows that if first job is implemented by third machine, 
second job is implemented by fifth machine and so on, then we would have ideal time 
for producing or performing related job, Such that required time for performing one job 
on specified machines with above mentioned operations and ignoring other times (such 
as supplying materials, path stops, delivering times) would be as follows (Figure 6): 

 

 
 

Figure 6. Result array 

 
 
 
 
 
 

 
   20+32+40+17=109 Second 
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S No Instance 
Name 

Instance 
Size 
(n × m) 

Obtained Values from 
the JSSP using Simple 
Genetic Algorithm 

Goncalves 
et al [15] 

Obtained Values from 
the Proposed 
Algorithm (FJSP-GSA) 

1.  FT06 6 × 6 55 55 55 
2.  LA01 10 × 5 686 666 633 
3.  LA02 10 × 5 739 655 680 
4.  LA03 10 × 5 670 597 484 
5.  LA04 10 × 5 634 590 546 
6.  LA05 10 × 5 593 593 544 
7.  LA06 15 × 5 956 926 896 
8.  LA07 15 × 5 994 890 860 
9.  LA08 15 × 5 906 863 855 
10.  LA09 15 × 5 956 951 954 
11.  LA10 15 × 5 958 958 955 
12.  LA11 20 × 5 1267 1222 1215 
13.  LA12 20 × 5 1071 1039 1020 
14.  LA13 20 × 5 1188 1150 1121 
15.  LA14 20 × 5 1292 1292 1270 
16.  LA15 20 × 5 1383 1207 1155 
17.  LA16 10 × 10 1080 945 943 
18.  LA17 10 × 10 906 784 745 
19.  LA18 10 × 10 976 848 828 
20.  LA19 10 × 10 1021 842 718 
21.  LA20 10 × 10 1072 907 890 

7. Experimental Results 

The C#.Net 2008 language programming was used for testing the proposed algorithm 
and in this paper, we have used 21 instances that are taken from the OR-Library 
(Beasley, 1990) as benchmarks to test our new proposed algorithm. 

We have used the Intel Pentium Core i5 Duo 2.4GHz Processor and 4GB RAM 
configuration system with Windows XP as the platform to run this algorithm and 
achieved the following results. 

Goncalves et al [15] gives optimal Solution for most of the benchmark problems. But 
our proposed algorithm gives the optimal solution within a minimum considerable 
amount of time. We can’t compare the computation times of Goncalves et al [15] with 
our proposed work, because the system configuration is not unique (Tamilarasi and 
kumar [22]). 

8. Conclusion 

This paper has presented a new Gravitational search algorithm for FJSP. Purpose of 
scheduling job shop production systems is determining sequence of operations on 
related machines, such that production time get optimized. Gravitational search 
algorithm is one of random-base algorithms for optimum finding in different problems, 
which has been established based on exploiting gravity rules in nature. Proposed 
solution which is offered for scheduling job shop production systems is based on this 
algorithm where optimal or near optimal solutions might be found. This solution 
correspond dimensions of searching space with state array houses, and while controlling 
the search guarantees improved search and proportioned states. 

Finally, we believe that the methodology used in this paper can be extended to solve 
other scheduling problems.  
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