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Abstract 
In this paper, an integration of Improve Particle Swarm Optimization (IPSO) in 

combination with Successive Quadratic programming (SQP) so called IPSO-SQP 
algorithm is proposed to solve time optimal bang-bang control problems. The 
procedure is found not sensitive to the initial guess of the solution. Due to random 
selection in the first stage of the search process, the chance of converging to the 
global optimum is significantly increased, without sticking in a local optimum. The 
combined technique gains both advantages of its original algorithms. The IPSO 
directly minimizes the cost function without the need for gradient-based techniques. 
The performance of the outcome will be increased when the SQP immediately 
undertakes the optimization task. This is shown via applying those on some other 
nonlinear systems. Consequently, the proposed algorithm is successfully applied on 
a time optimal bang-bang control of an autonomous underwater vehicle. A pitch-
programming task is also investigated for the autonomous underwater vehicle by 
designing an optimal PID controller. 

 
Keywords: Autonomous Underwater Vehicle, IPSO-SQP Algorithm, Optimal PID Controller, Pitch 

Programming, Time Optimal Bang-Bang Control 
 

 

1. Introduction 

One of the most common type of control input is piecewise (constant) function 
which consist of a sequence of (fixed) inputs that is applied to systems with appropriate 
switching times. In many mathematical models of the mechanical systems, the control 
input is of bang-bang type. The bang-bang solution may also be encountered in some 
optimal control problems. A special situation arises when the Hamiltonian is linear in 
terms of the control input and the response is also nonsingular [1]. Using the bang-bang 
Controller changes the problem to finding the switching times [2], [3], [4], [5]. Mohler 
in [5] and [6] presented a bang-bang control algorithm called switching time variation 
method (STVM) that requires information of the number of switching and the switching 
times as initial guesses. It generates a sequence of switching functions whilst computes 
the gradient of the cost function with respect to the switching times. Using this gradient 
information, the switching times are corrected at any iteration. During the correction 
process, a careful selection of the step size is crucial because the Hessian of the cost 
function is not estimated. In [7], the Switched Time Optimization (STO) algorithm is 
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used for time optimal control of a two-linked manipulator. The STO algorithm needs a 
good initial guess for the switching times to converge to a global minimum. In [8] 
primarily the switching time computation (STC) method is proposed to assess the time 
of the switching.  The work was followed to minimize the final time in a time optimal 
bang-bang control problems. In [9] a general algorithm for Time Optimal Switching 
control (TOS algorithm) is proposed of nonlinear systems using a single control input. 
Primarily the STC method is used to find a feasible switching control then the TOS 
algorithm uses this information as an initial guess to solve the time optimal bang-bang 
control problem. In [10] a method is proposed to use a mathematical programming 
formulation to solve the bang-bang constrained optimal control problems. This method 
not only gives what STC and TOS algorithms can give together, but also assesses 
sufficient conditions for a local minimum. Unfortunately, this algorithm needs a good 
initial guess otherwise; the algorithm may converge to a local minimum. Generally, 
gradient-based methods have the possibility of getting trapped at local optimum 
depending on the initial guess of the solution. In order to achieve a good result, these 
methods require very good initial guesses of the solution. Besides, as the complexity of 
the system increases, the specification of a suitable initial guess can become 
troublesome [11].  Thus global optimal control methods such as genetic algorithm 
(GA), particle swarm optimization (PSO), differential evolution (DE) and etc. can be 
used to find the global optimum or a sufficiently close approximation. In the heuristic 
algorithms, the cost function’s gradient is not required. They are not sensitive to initial 
guess of the solution and they usually do not get stuck into a local optimum. Based on 
these advantages, they have been successfully applied in many optimal control 
problems [11], [12], [13]. In this paper, the IPSO-SQP algorithm is used to overcome 
the shortages of traditional methods in time optimal bang-bang control problems. First, 
an improved PSO (IPSO) algorithm is proposed to enhance global search ability and 
convergence speed of PSO. Second, to achieve faster convergence speed around global 
optimum and higher convergence accuracy, the IPSO is combined with successive 
quadratic programming (SQP) algorithm. 

In recent years, AUVs have become an intense area of oceanic research because of 
their emerging applications, such as deep sea inspections, underwater pipelines tracking, 
fish tracking and different application in military industry, etc [14], [15]. These vehicles 
are controlled autonomously. The required energy, which is carried on board provides 
wider scope of operation in comparison with the other type of underwater vehicles such 
as ROVs. Despite of the complexity in the structure and the difficulty to control and due 
to capability of the AUVs, these are still of the researcher’s interest. The task to be 
controlled here is the trajectory of an AUV from the depth lower than 50 meters towards 
the surface. It is necessary that the AUV has to come back to the nest where is located 
on the sea surface in minimum time.  The work will be followed when a PID controller 
with optimal coefficients gain is tuned for the pitch-programming task. This paper is 
organized as follows: 

In section2, a time optimal bang-bang control problem is addressed and the 
proposed IPSO-SQP algorithm for solving time optimal bang-bang control problem is 
introduced. The application of this algorithm in a time optimal bang-bang control of 
three nonlinear systems (Van Der Pol, Rayleigh and F8 aircraft) is presented in 
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section3. The advantage of the proposed method is discussed via a comparison study 
with some other similar methods. A simulation study shows the significance of the 
proposed IPSO-SQP algorithm for solving time optimal bang-bang control problem. In 
Section4 to assess the performance of the proposed method, it is used on a time optimal 
bang-bang control of an AUV. Artificial tuning of a PID controller designation for pitch 
programming is performed in section 5. Finally, the work will be closed by a conclusion 
in section6. 

1. IPSO-SQP ALGORITHM FOR SOLVING TIME OPTIMAL BANG-BANG 
CONTROL PROBLEMS 
In this paper, a configuration of IPSO and SQP algorithms –so called IPSO-SQP, is 

used in a time optimal bang-bang control problem. In which there is no need to a have 
good initial guess of the solution. The IPSO is gained to solve nonlinear optimal control 
problems [11]. This has shown to have rapid convergence to a near optimum solution. 
In fact, the search process becomes very slow around the global optimum. On the other 
hand, the SQP algorithm is weak to escape from the local optimum. Since the 
convergence speed and the accuracy to reach to the global optimum are more 
significant, it is meaningful to combine two describe techniques. A combination process 
of these two methods is as follows:  

First, the IPSO algorithm is used to find a near optimum solution. Thereafter the 
search process immediately switches to the SQP algorithm to gain the higher converge 
rate to achieve global optimum. More details are presented in the following sections. 

2.1 IPSO algorithm 
Particle swarm optimization (PSO), as an effective heuristic optimization technique, 

is based on simulating of the movement and flocking of birds. Eberhart and Kenedy first 
improved this algorithm in 1995 [16].  The PSO uses the concept of social mutual effect 
to solve an optimization problem. In the PSO, particles move in the search space to find 
best solution. Each particle is considered as a point in an N-dimensional space. The 
flight is updated according to the past experience of the particle and also other birds 

In the search space, each particle continues the flight according to the best solution 
that has been achieved so far by this particle personally. This value is called the 
personal best (pbest). The other trajectory where the PSO follows is the best value that 
has been achieved so far by each particle in the vicinity of that particle. This value is 
called the global (or local) best (gbest or lbest). The main concept of the PSO is 
involved with the acceleration of each particle towards the pbest and the gbest (lbest) 
using an inertia weight. In the beginning of the search process initial population is 
randomly created in the given search space. Each particle has its own velocity vector, 
which is updated at any iteration. The updating velocity equation is as follows: 

( ) ( )1
1 1 2 2

k k k k k k
i i i i iv v c r pbest x c r gbest xω+ = + − + −  (1) 

where k
ix  is the position of the thi  particle in thk  iteration, ω  is the inertia weight. 

Coefficients 1c  and 2c  are the acceleration multipliers, ir  is a random uniformly 
distributed number in the range [ ]0,1 . When the velocity is evaluated from (1) the 
position of every particle is updated as follows: 
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1 1k k k
i i ix x v+ += +  (2) 

The update laws are repeated until a stopping criterion in the algorithm is met. 
Preventing the PSO algorithm to stick in a local minimum, a weighting factor [11] is 
proposed in Eq. (3) which is updated as follows: 

( )
1

1 exp( ( ))
k
i k

i

w
F pbestα

=
+ −

 (3) 

considering =1 ( )F gbestα where ( )k
iF pbest  and ( )F gbest are the fitness value of the 

personal and global best respectively. Therefore, the algorithm is ultimately called 
IPSO.  

2.2 SQP algorithm 
SQP is an iterative analytical nonlinear programming method. This technique begins 

from an initial point to find a solution using the gradient information. This optimization 
method is faster than other population based search algorithms. Although the SQP 
method is highly dependent on the initial estimate of the solution [17], [18], this has 
successfully applied in some optimal control problems [19], [20]. 

The SQP method is based on an iterative formulation together with the solution of 
some other quadratic programming sub problems. The optimization problem in SQP 
method is considered as follows: 

minimize: ( )
subjected to: ( ) 0,    1, 2, ,i

J x
x i lψ


 ≤ = 

 (4) 

where ( )J x  is the cost function and ( )i xψ  stands for the constraint. In this regard the 
Lagrangian function ( , )L x λ is constructed in terms of the Lagrangian multiplier iλ , the 
cost function together with the constraint which is as follows: 

1

( , ) ( ) ( )
m

i i
i

L x J x xλ λψ
=

= + ∑  (5) 

In fact, the SQP consists of three main parts: 
1- Update the Hessian of the Lagrangian function according to: 

1

T T
k k k k

k k T T
k k k k k

q q H HH H
q s s H s+ = + −  (6) 

2- Solve the quadratic programming sub-problem: 
1min  ( )
2

T T
k k k k kd H d f x d+ ∇  (7) 

( ) ( ) 0     1, ,T
i k k i k ex d x i mψ ψ∇ + = =   
( ) ( ) 0     , ,T

i k k i k ex d x i m mψ ψ∇ + ≥ =   
3- Apply a linear search to find a solution for the next iteration: 

1k k kX X dα+ = +  (8) 
The algorithm is repeated until the stopping criterion (maximum iteration or 
convergence criterion) is met. The step length parameter kα  is determined via a linear 
search procedure.  

2.3 IPSO-SQP Algorithm for Solving Nonlinear Optimal Control Problems 
In the following a brief review of the IPSO-SQP algorithm is expressed. For more 

details, one may refer to [11]. In this method, primarily a group of particles is randomly 
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initiated. The IPSO is executed to find a global kind best position. Then the routine is 
switched to the SQP algorithm to search around the found global best. This is written 
here: 

Step 1: Initialize the position and velocities of particles, using uniformly distribution 
random number.  

Step 2: Evaluate the fitness value for each particle. 
Step 3: If the maximum iteration is arrived, go to step7, else, go to step4. 
Step 4: The global best is stored. If the change between the current global best fitness 

value and its previous one is smaller than a predefined value, go to step7 else 
continue. 

Step 5: The velocities and position of all particles are updated according to Eq.(1) and 
(2). 

Step 6: The inertia weight for each particle is updated according to Eq.(3) and go to 
step2.  

Step 7: Switch to the SQP algorithm to search around the global best, which is found 
by IPSO. In this case, the best solution obtained by IPSO is considered as an 
initial guess for the SQP algorithm.  

2.4 Problem Statement 
The task is to guide a system from a given initial state to a target in a minimum 

time, using a bang-bang control. Consider the following nonlinear dynamic: 
( )( ), ( )x f x t u t=  (9) 

where ( ) nx t ∈  is the state vector, : 0, fu t U  → ⊂  
 
is a finite time control input and 

: nf U× →   is a vector field. The goal is to steer the system to a desired target by 
using some piecewise constant control, namely a finite sequence of constant input 
{ }1 1, , Nu u +  where N is the number of switching. In other words, arcs are generated by 
the given constant inputs. These arcs are to be concatenated in a prescribed order such 
that to reach the target state. A bang-bang control input is defined as follows: 

( )       in the  arcth
iu t u i=  (10) 

where ith arc is the segment of the trajectory ( )x t  ( )1, ,   1, ,i it t t i N−∈ =   and it  is the 
switching time. A concatenation of these arcs from 0x to a target state Tx  is 
schematically shown in Figure1. 

      1ζ
1f

0x

Tx
2ζ

2f

1Nζ +3ζ
1Nf +3f

1( )x t

2( )x t

 

Figure1. A concatenation of arcs from 0x to Tx  
The time duration of each arc is defined as follows: 

1,    0,1, , 1i i it t i Nζ −= − = … +  (11) 
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where iζ is the time required to travel along with  the ith arc. The vector of 1NRζ +∈  is 
defined by: 

[ ]1 1, , Nζ ζ ζ +=   (12) 
Given the number of switching and the magnitude of the control input for each arc, the 
problem is reduced to final time (summation of the arc times) optimization subjected to 
equality constraint ( )f Tx t x= . By using the penalty method [21], the constraint is added 
to the cost function as a penalty function. This changes the constrained problem to an 
unconstrained one. Thus, the time optimal bang-bang control problem is reduced to: 

( )
1 2

1 1

minimize  ( )
j

N n

i i j f T
i j

P x t xζ α
+

= =


+ −


∑ ∑  (13) 

where iα , 1,2, , 1i N= + is the weighting factors. ( )j fx t  and 
jTx , 1,2, ,j n=   are the actual 

and desired value of the thj  state variable respectively. Now, the problem is to find: 
- The number of switching N, 
- The value of the control input in each arc 
- and the time duration of each arc ,  1, 2, ,i i Nζ =   

such that the cost function in (13) is minimized. This is shown to be performed through 
using IPSO-SQP method which is described in the following.  

2.5 IPSO-SQP Algorithm In Time Optimal Bang-Bang Control Problems 
In this method by inspiring the concept in [7], the number of switching and the 

magnitude of the control input for each arc are determined. The switching times will be 
computed gaining the IPSO-SQP algorithm to take the system to the target from a given 
initial state in a minimum time. The discrepancy from the desired trajectory is added as 
a penalty function to the cost function (Eq.(13)). The particles in IPSO-SQP algorithm 
are treated as arc times. Thus, the dimension of each particle is 1N + , where N  is the 
number of switching.  For example if the initial switching number is guessed 3N = with 

max(0)u u= , then the arc times and the control input will be of the form { }1 2 3 4, , ,ζ ζ ζ ζ ζ=

and { }max max max max( ) , , ,u t u u u u= − − respectively. Each dimension of a particle is bounded. 
Since time is a nonnegative quantity, the lower bound of each dimension should be 
considered zero. However, the value of zero yields numerical errors, thus preventing 
such errors the lower bound is considered 610−  which is very close to zero. Determining 
the upper bound value depends on designer. If a designer is familiar with the problem, 
he or she can choose a value for the upper bound, which is very close to the real 
solution. Otherwise, it is better to choose the upper bound large enough to annihilate the 
guessing error through running the algorithm. It must be noticed that assigning a very 
large value to the upper bound may lead the algorithm to converge through more 
number of iterations.  After determining the bounds, the velocity and the position of a 
group of particles are randomly initialized. The IPSO algorithm is executed to search for 
the global best position. The SQP algorithm is then used to search around the found 
global best. In the following, the procedure of the IPSO-SQP algorithm for solving the 
time optimal bang-bang control is presented. 
Step 1: Guess the number of switching N. 
Step 2: Set the initial value of the control input max(0)u u= + . 
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Step 3: Find a possible solution with N times switching using the IPSO-SQP method 
and set 1i = . 
Step 4: Find a time optimal solution for N i+  and N i−  switching using the IPSO-SQP 
method. 
Step 5: In the case of no improvement on ft , keep the obtained solution in step3 as a 

possible optimal solution and let the algorithm continue. Otherwise, set 1i i= +  
and go to step4. 

Step 6: if max(0)u u= −  assign a label 2S to the solution and continue; else, the label of the 
solution will be assigned as 1S . Set max(0)u u= −  and go to step3. 

Step 7: Among the sets of the solution 1S  and 2S , select the answer with the minimum 
time ft

 
and regard it as the desired solution and stop. 

To use this procedure, primarily the value of the switching number is guessed. Then for 
an initial control input ( max(0)u u= + ), the algorithm is run to find the optimal arc times. If 
for a special switching number N, the final time is improved then the algorithm searches 
for the best solution for 1N +  and 1N −  switching. Again, the solution is checked to find 
a possible improvement.  Detecting any improvement, the algorithm is executed again 
for 2N +  and 2N −  switching. The procedure continues until improvement in final time 
is not detected. In this case, the best result that has been achieved so far is stored and the 
algorithm is run for the other initial control input ( max(0)u u= − ) and the same initial guess 
of the switching number (N). Similarly, steps of the algorithm are repeated for the new 
guess. Consequently, the best results achieved for each initial control input are 
compared and the one, which yields less final time, is considered as the solution of time 
optimal bang-bang control problem.   

Through using the proposed IPSO-SQP algorithm for solving time optimal bang-
bang control problems a good initial guess for starting the algorithm is prevented. In 
contrast to STO method, there is no need to use any additional method to find a suitable 
start point. Moreover, the IPSO-SQP algorithm has a simple code and it is very easy to 
deal with also, it can be applied for wider range of problems. The hybrid configuration 
makes it a powerful algorithm, which rarely get stuck in the local optima. In the 
following, to verify the performance of the proposed algorithm it is used in time optimal 
bang-bang control of some nonlinear systems. 

 
2. Application Of IPSO-SQP Algorithm In Time Optimal Bang-Bang Control Of 

Some Nonlinear System 
In this section, the IPSO-SQP algorithm is applied on a time optimal bang-bang 

control of the Van Der Pol equation, Rayleigh system and an F8 aircraft model. The 
results are compared with those of obtained in [9] and [10]. 

3.1 Van der Pol Equation 
A controlled Van Der Pol equation with the effort u is expressed as follows: 

( )
1 2

2
2 1 1 21

x x

x x x x u

=

= − − − +




 (14) 

where u is assumed to be of the bang-bang, namely { }1,1u ∈ − . The goal is to steer the 
states from the initial point [ ]0 1,1x = to the target point [ ]0,0Tx = in minimum time. The 
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STO method was priory used in time optimal bang-bang control of Van Der Pol 
equation in [9]. In the following the results obtained using STO method is presented 
then the proposed IPSO-SQP method is also used for time optimal bang-bang control of 
Van Der Pol equation. 
 

v STO Method 
As it is mentioned in the introduction of this paper, The STO algorithm is very 

sensitive to the initial guess of the solution thus, the STC method is used primarily to 
assess an appropriate start point. The STC method set (0) 1u =  and found the results as 
follows [9]: 

[ ]3.92540,  0.43500,  3.28560ζ = , 7.64600ft =  
The distance from the origin was also 0.00037 . Using the outcome of the STC technique 
as an initial guess of the STO, the following result is achieved [9]: 
 [ ]0.7230,  2.37220ζ =  , 3.09520ft =

  
These results provide a fewer distance to the final states from the origin of order 410− . In 
fact, the length of third arc was found zero which decreases the time significantly. 
However, this algorithm [9] is found sensitive to the initial guess of the solution. A 
misappropriate choose of the initial guess may lead the algorithm to converge to a local 
minimum. Thus, it needs an additional algorithm (STC method) to assess an appropriate 
start point. 
 

v IPSO-SQP Algorithm 
The IPSO-SQP is implemented on Van Der Pol equations. To provide a chance for 

the IPSO algorithm to converge, the size of the population of swarm is assumed 30 
whilst both 1c  and 2c  are set to 2.1. The number of switching is initially assumed 4N = . 
Hence, the number of arcs has to be one more than the number of the switching. 
Accordingly, the dimension of the optimization problem i.e. the number of arcs is equal 
to five. In order to show that the algorithm is not sensitive to the initial guess, the range 
of the arc times in each dimension is assumed 610 ,10iζ − ∈   , and initially the particles are 
randomly distributed in this range. The lower bound is chosen as 610− not to be zero due 
to numerical consideration. The IPSO search algorithm is switched to the SQP method, 
when the change in the cost function value is achieved less than 0.0001 after 10 
iterations. 

The algorithm is run for the initial guess of 4N = while the initial control input is 
assumed (0) 1u = . In step4, the switching number 3N =  and 5N = is also tried for possible 
better solution. The improvement in final time is detected for 3N = thus the value of i is 
increased and the algorithm goes back to step4 to find the best solution for 2N = and 

6N = . This time the value of final time does not improve thus the algorithm goes to 
step6 to repeat the same procedure for{ (0) 1,  4u N= − = . In step3, the algorithm is run for
{ (0) 1,  4u N= − = . Then in step4, the algorithm is performed for{ (0) 1,  3,  5u N N= − = = . 
Final time is improved for 3N = hence, the value of i is increased and the algorithm goes 
to step4 to search the solution for{ (0) 1,  2,  6u N N= − = = . Again, the final time is 
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improved and as a result, the value of i is increased. In step4, the best solution is search 
for{ (0) 1,  1,  7u N N= − = = . Improvement in final time for { (0) 1,  1u N= − = causes the 
algorithm to try { (0) 1,  8u N= − =  for possible better solution. However, for this value of 
switching number, the final time does not improve and finally the algorithm goes to 
step7 for comparing the results obtained for (0) 1u =  and (0) 1u = − . Consequently, the 
algorithm provides 1N =  as a result, which produces [ ]0.7230,  2.3717ζ =  and 3.0947ft =

while the control input is { }( ) 1,1u t = − . In fact, the best result is as follows: 

{ }
{ }

1,
( ) 1,1

0.7230, 2.3717
3.947f

N
u t

t
ζ

=
 = −
 =
 =

 

The accuracy of reaching the origin is accessed by 410− . The state trajectories can be seen 
in Figure2.  
 

 
Figure2. 1x and 2x  state trajectory and time optimal bang-bang control input 
It can be seen from these figure that reaching the target is possible for one switching of 
the control input from its minimum value ( ) 1u t = − to its maximum value ( ) 1u t = at

1 0.7230t =  seconds. The final value of the state variables are very close to zero and this 
confirms the performance of the proposed method for solving time optimal bang-bang 
control problems. Meanwhile, using this algorithm, there is no need to a good initial 
guess of the solution, which is a troublesome task in the gradient based-methods such as 
STVM [5], [6] STC [8], STO [9] or mathematical programming [10]. Applying an 
additional initial algorithm is also prevented for preparing the start point through using 
the proposed IPSO-SQP algorithm. The quality of the work will be verified when the 
Rayleigh problem is also solved.  
3.2 Rayleigh System 
Consider the following dynamic: 
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( )
1 2

2
2 1 2 21.4 0.14 4 ,       ( ) 1

x x

x x x x u u t

=

= − + − + ≤




 (15) 

The objective is to minimize the following cost function, starting from [ ]0 5, 5x = − −  to 
the target [ ]0,0Tx = : 

( ) ( )2 2
1

0

( )
ft

fJ u t ct u x dt= + +∫  (16) 

where c is a positive constant coefficient. A time optimal control that has been reported 
for this system is of the bang-bang type [9]. Thus, the control input is set to { }1,1u∈ − . 
Substitution the input in (16) modifies the cost function to: 

( ) ( ) 2
1

0

( ) 1
ft

fJ u t c t x dt= + + ∫  (17) 

The coefficient c is set to1 16 [9]. 

 

v Mathematical Programming Method 
In [9] using a mathematical programming method time optimal bang-bang control 

problem of the Rayleigh system is solved. The initial guess of the control input and the 
arc times are assumed as (0) 1u = and [ ]1.5,  2,  1,  0.5ζ =  respectively [9]. Results of 
applying the method in terms of the arc time intervals and the final reaching time are 
respectively reported as: 

[ ]1.47614,  1.76069,  1.76069,  0 ζ = and 3.773841ft = .
 

It can be seen that how the initial point is close to the real solution also the time 
duration of the last arc is found zero. It means that two switching performs reaching the 
target. This algorithm is very sensitive to the initial guess of the solution, and needs the 
designer to be very familiar with the problem. It also needs many derivative information 
of the cost function. These may cause troubles when the complexity of the system is 
increased or when the designer is not very familiar with the problem to find a good 
initial guess. 

 

v IPSO-SQP Algorithm 
The IPSO-SQP is implemented for a swarm size of 30. Both 1c  and 2c  are set to 2.1. 

An initial guess for the number of switching is assumed 4N = . In order to show that the 
algorithm is not sensitive to the initial guess, the range of the arc times in each 
dimension is assumed 610 ,10iζ − ∈   , and initially the particles are randomly distributed in 
this range. The PSO search process algorithm switches to the SQP method, when the 
change in the cost function value is found less than 0.0001 after 10 iterations.  
In step3, the algorithm is run for{ (0) 1,  4u N= = . In step4, 3N =  and 5N = are also tried. 
The final time improves for 3N = and as a result, the value of i is increased. Then, the 
algorithm goes to step4 to search the solution for{ (0) 1,  2,  6u N N= = = . Again, an 
improvement in final time for 2N = causes the algorithm to increase the value of i and 
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look for possible better solution for{ (0) 1,  1,  7u N N= = = . However, the value of the final 
time does not improve for 1N =  and 7N = and the best results, which is obtained for 

(0) 1u =  is stored and the algorithm goes to step6. Similar procedure is performed for
(0) 1u = − . Finally, in step7 by comparing the results obtained for both initial value of the 

control input, the best result is achieved as follows: 

{ }
{ }

2
( ) 1, 1,1

1.2772,1.9910,0.4208
3.6890f

N
u t

t
ζ

=
 = −
 =
 =

 

The accuracy of the results is about 310− . It can be seen that not only the final time 
obtained by this method is lower than what was achieved in [9] but also the algorithm is 
not sensitive to initial guess of the solution. The state trajectories can be seen in 
Figure3.  
 

 
Figure3. 1x and 2x  state trajectory and time optimal bang-bang control input 
It is obvious from Figure3 that the control input is switched two times at 1 1.2772t =  and 

2 3.2682t = . This control input steers the states from the initial point from [ ]0 5, 5x = − −  to 
the target [ ]0,0Tx = in 3.6890 seconds. The final value of the states is very close to zero.  

3.3 F8 Aircraft Model 
The F8 aircraft model which is used in this paper is also used in many engineering 

applications [10], [22]. The model is as follows: 
2 2 2 3 2 2 3

1 1 3 1 3 1 2 1 3 1 1 1

2 3
2 3 2 2 3

3 1 3 1 1 1 1

0.877 0.088 0.47 0.019 3.846 0.215 0.28 0.47 0.6

4.208 0.396 0.47 3.56 20.967 6.265 46 61.4

x x x x x x x x x x u x u x u u
x x
x x x x x u x u x u u

= − + − + − − + − + + +
=

= − + − − − + + +





 

(18
) 

where 1x is the angle of attack in radians, 2x the pitch angle, 3x the pitch rate in rad/s, and 
u is the tail deflection angle as a control input. The aim is to steer the aircraft from the 
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initial state [ ]0 26.7,0,0
180

Tx π
=  to the target [ ]0 0,0,0 Tx = with appropriate switching of the 

control input 3u = ±   in minimum time. 

 

v Mathematical Programming Method 
Time optimal bang-bang control of the F8 aircraft model is solved in [10] using a 
mathematical programming method. This algorithm is very sensitive to the initial guess 
of the solution. In [10] the method is executed for different start points and as results 
different results are achieved. For example for the initial guess of 

[ ]0.5,  1,  0.5,  1,  0.5,  0.5ζ =  with (0) 3u = +  the following result is obtained for the optimal 
arc times and final time, which is a local minimum: 

[ ]0.102917,   1.927923,   0.166868,  2.743384,0.329923,  0.471162ζ =        5.742177ft =  
and for the initial guess of [ ]1,  1,  1,  1,  1,  1ζ = with (0) 3u = +   the result is achieved as 
follows which is a global minimum:  

[ ]1.1327648,   0.3474915,   1.6088814,  0.2223491,0,  0.4700298ζ =        3.781517ft =  
It can be seen that finding the global optimal solution by this method is highly 
dependent to the initial guess. 

 

v IPSO-SQP Algorithm 
The IPSO-SQP algorithm is used for solving time optimal bang-bang control problem 
of the F8 aircraft. First, the algorithm is initialized. The initial value of the switching 
number is guessed 4N = . The parameters 1c  and 2c  are set to 2.1. The swarm size is 
chosen 30s = . The lower and upper bound of each dimension of particle is determined

610 ,10iζ − ∈   hence, the particles are initially distributed randomly in this range.  The 
search process of IPSO algorithm is switched to SQP method, when the change in cost 
function value is smaller than 0.0001for 10 iterations. 
In step3 of the proposed IPSO-SQP algorithm, { (0) 3 , 4u N= + =  is executed. In step4, 
{ (0) 3 , 3, 5u N N= + = =   is also tried. The final time is improved for{ (0) 3 , 3u N= + = . 
Thus, the value of i is increased and the algorithm goes to step4 to search for possible 
better solution with { (0) 3 , 2, 6u N N= + = = . However, the final time does not improve for 
these value of switching number and the algorithm goes to step6 to repeat similar 
procedure for { (0) 3u = −  . After executing the algorithm for different switching number, 
in step7, the best results are compared and the global optimal solution is achieved as 
follows: 

{ }
[ ]

3

( ) 3 , 3 ,3 , 3

1.1348,0.3464,1.6083,0.6905
3.78f

N
u t

t
ζ

=


= − −


=
 =

   

 

The state trajectories for the best result are depicted in the following figure. 
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Figure4. 1x , 2x  and 3x state trajectory and time optimal bang-bang control input 
 

It can be seen from these figures that reaching the target from the initial point is 
possible for 3 times switching of the control input at times: 1 1.1348t = , 2 1.4812t =  and 

3 3.0895t = . 
The final values of the states are shown in the figure and are very close to zero. It 
indicates that the algorithm is highly capable for solving time optimal bang-bang 
control problems.  
Besides, a practical time optimal control problem will be investigated here to verify the 
quality of the work. The problem is concerned with an autonomous underwater vehicle 
where is searching the seabed. The supply energy is maintained with carried on board 
batteries. The problem is expressed in the next section. 

3. Time Optimal Bang-Bang Control of An Autonomous Underwater Vehicle 
The AUV is used to search the seabed in depth of lower than 50 meters. It is 

necessary that the AUV to come back to the nest where is located on the sea surface in 
minimum time. Besides the AUV has to have an angle of attack of about 10 degree 
while comes out of the sea to successfully locate in the nest. The IPSO-SQP method is 
used to control the vehicle. The AUVs general equation of motion is presented in 
Appendix A. However, the equations in xz  plane are derived in the next section.  
4.1 Equations of Motion In xz Plane 

The F8 aircraf From Appendix A it can be easily seen that equations of motion of 
the AUVs are nonlinear, coupled with six degree of freedom. Fortunately, they can be 
shown in terms of six first order equations. On the other hand, the derivative of each 
variable is a nonlinear function with respect of other variables. In this paper the motion 
is assumed to take place only in the pure depth-plane. Thus ,  ,  ,  ,  ,  u w q x zθ  are 
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considered whereas other variables are immediately neglected. In this case, the equation 
of motion is expressed as follows: 

0.86 2 2
1 2 3 4 5 6 7 8 9 10 11sin cos Thrusteu a a a u u a qu a qw a uw a u a q q a w w a q aθ θ δ= + + + + + + + + + +

 
0.86 2 2

1 2 3 4 5 6 7 8 9 10 11sin cos Thrustew b b b u u b qu b qw b uw b u b q q b w w b q bθ θ δ= + + + + + + + + + +

 0.86 2 2
1 2 3 4 5 6 7 8 9 10 11sin cos Thrusteq c c c u u c qu c qw c uw c u c q q c w w c q cθ θ δ= + + + + + + + + + +

 
qθ =  
cos sinx u wθ θ= +  

sin cosz u wθ θ= − +
 

maxe eδ δ= ±  

(19
) 

where the value of parameters are presented at the table B.I in appendix B.  

4.2 Goals And Assumptions 
The goal is to steer the AUV from the depth of 50 meters towards the nest where is 

located on the surface, of course in a least time as possible. Due to practical restriction, 
the AUV is forced to have a pitch angle of about 10 degrees when it reaches the surface. 
Meanwhile batteries of one per unit supply the thruster force. It is also assumed that the 
external disturbance of environmental forces and moments like waves and currents are 
negligible. The control input is considered as bang-bang controller. Consequently, the 
IPSO-SQP method is preferred to be used for a time optimal bang-bang control purpose.  
4.3 Simulation 

The IPSO-SQP is implemented for a swarm size of 30. Both 1c  and 2c  are set to 2.1. 
Initial guesses of the number of switching and the control input are assumed to be 4N =

and (0) 7 180( )u radπ= −  respectively. In order to show that the algorithm is not sensitive 
to the initial guess, the range of the arc times in each dimension is assumed 610 ,30iζ − ∈   , 
and initially the particles are randomly distributed in this range. The PSO search process 
algorithm is switched to the SQP method when the change in the fitness value becomes 
less than 0.0001 after 10 iterations. The algorithm is accordingly results [ ]13.8698,  8ζ =  
and 21.8698ft =  for an optimum number of the arcs and the final time. This verifies that 
the reaching time to the target is achieved with two arcs: 

{ }
{ }

1
( ) 7 180, 7 180 ( )

13.8698,8
21.8698f

N
u t rad

t

π π

ζ

=
 = − −
 =
 =

 

The results are depicted in Figure 5 to 11. 
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Figure5. The fin angle in the time optimal bang-bang control Figure6. The pitch angle 

 

 
Figure7.  The pitch rate (the angular velocity around the z axis) 

 
Figure8.  The forward linear speed along with the longitudinal axis

 
 

 
Figure9.  The Vehicle depth towards the surface Figure10. The linear velocity along with the z axis 

 

 
Figure11. The Vehicle longitudinal motion 
 

From Figure5 it can be seen that the control input (the fin angle) with just one 
switching forces the AUV towards the surface whilst keeping the pitch angle (Figure6) 
10 degrees when it reaches the surface. The pitch rate is also depicted in Figure7. The 
forward linear speed, the Vehicle depth, the heave rate and the longitudinal motion 
along with the x axis are respectively shown in Figs. 8, 9, 10 and 11, verifying that the 
proposed technique does the duty well enough. 
4. Pitch Programming Task 

An auxiliary aim of controlling the AUV is to measure and control the pitch angle 
via an optimum based control input eδ . It should be noted that the required trajectory in 
the tracking problem is yielded from another optimum job through the IPSO-SQP 
algorithm. A PID controller in the closed loop system (Figure12) is designed to achieve 

0 5 10 15 20
-10

0

10

time (sec)

δ e (d
eg

)

Time Optimal Fin Angle

 

 

δe

0 5 10 15 20 25
0

20

40

time (sec)

θ 
(d

eg
)

θ

 

 
Pitch Angle

0 5 10 15 20 25
-0.1

0

0.1

time (sec)

q 
(ra

d/
s)

Pitch Rate

 

 
q

0 5 10 15 20 25
5

6

7

8

time (sec)

u 
(m

/s
)

Forward Linear Speed

 

 

u

0 5 10 15 20 25
-60

-40

-20

0
Depth (z)

time (sec)

z 
(m

)

 

 

Depth (z)

0 5 10 15 20 25
-1

-0.5

0

0.5

time (sec)

w
 (m

/s
)

Heave Rate

 

 
w

0 5 10 15 20 25
0

50

100

150

time (sec)

x 
(m

)

Longitudinal Motion

 

 

x



 

IPSO-SQP Algorithm for Solving Time … T. Taleshian, A. Ranjbar Noei, R. Ghaderi 
 
 

84 

the goal. The PID gains ( ), ,P I DK K K  are tuned by using the IPSO-SQP algorithm 
described in subsection2.3 to minimize the tracking error. 

SystemPID Controller
dθ θe eδ

+
−

pK IK DK

IPSO-SQP

 
Figure12. The closed loop control system in the pitch programming task 
 

In the IPSO-SQP algorithm described in subsection2.3, coefficients ,  P IK K  and DK  
are considered as particles. In this regard, the cost function, which is required to be 
minimized, is defined as follows: 

2

0

( )
ft

J e t dt= ∫  (20) 

Defining the error by: 
( ) ( ) ( )de t t tθ θ= −  (21) 

The desired trajectory ( )d tθ  is achieved from the time optimum bang-bang control 
problem in the last section. Furthermore ( )tθ  is the actual pitch angle of the vehicle. 

The IPSO-SQP optimization technique is implemented for a swarm size of 30. Both
1c  and 2c  are set to 2.1. The range of the each dimension is assumed

[ ],  ,  1000,0∈ −p I DK K K , and initially the particles are randomly distributed in this range. 
Choosing the negative value of the bound is due to the difference in sign conventions 
between the stern plane angle ( eδ ) and vehicle pitch angle. Positive stern plane angle 
will generate a negative moment about the y-axis, forcing the vehicle to pitch down 
(negative pitch rate). The PSO search process algorithm is switched to the SQP method 
when the change in the fitness value becomes less than 0.0001 after 10 iterations. The 
algorithm achieves the gains by: 

600,  0 and  285.2014= − = = −P I DK K K  .  
In the following, outcome of the simulation of applying the PID controller are 

illustrated in Figure 13 to 15. 

 
Figure13. The pitch tracking error signal  

Figure14. The vehicle depth 
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Figure15. The Control input vs. the fin angle ( eδ ) 

 
Apart from the smooth fluctuation in the graph (Figure13), the magnitude of the 
tracking error is seen negligible. It confirms that the controller is capable to track the 
desired pitch angle. The quality of the achieved depth trajectory is also seen in 
Figure14. 
5. Conclusion 
In this paper, the IPSO-SQP algorithm is used for the first time in a time optimal bang-
bang control problem. The algorithm is shown to have a high capability of finding the 
global minimum. It is also shown that there is no need to have good initial guess. The 
primary stage of the search procedure uses the IPSO method to minimize the defined 
cost function. This confirmed the advantage of the proposed algorithm, i.e. directly 
minimizing the cost function without using a gradient based technique. Then the 
algorithm switches to the SQP method to find the global solution more rapidly and 
precisely. The algorithm is followed by the IPSO-SQP method in time optimal bang-
bang control of three distinct nonlinear systems and an autonomous underwater vehicle. 
The final time, which is achieved by this method, was shown less than what was 
achieved by previous gradient based methods.  The significance of the proposed 
technique is also verified when it is used to tune the coefficients of the PID controller 
i.e. ,   and P I DK K K in a minimization of the tracking error. Ultimately, the tuned PID 
controller is successfully used in the pitch programming of AUV. Simulation results 
showed that the performance of the IPSO-SQP algorithm in both time optimal bang-
bang control and pitch programming are satisfactory.  

 
Dynamic motion of an AUV (Fig. A.1) can be described in both reference frames of 
attached to the body and inertia (the earth) one. A coordinate transformation states the 
variables on each. It must be noted that the effect of the motion of the earth in the fixed 
reference frame is neglected with respect to the vehicle motion. 
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Figure A.1.  The body and the inertia fixed reference frames 

AUV is usually expresses by six degree of freedom equations of motion. Theses 
equations can be described in either of two prescribed reference frames. One may state 
the equations in terms of the body fixed coordinates as follows: 

( ) ( ) ( )Mv C v v D v v g η τ+ + + =  (A.1) 
where: 

,   ( ) ( ) ( ),RB A RB AM M M C v C v C v= + = + ( ) ( ) ( )p vD v D v D v= +  (A.2) 
and 

ThrustCτ τ= +  (A.3) 
RBM  and ( )RBC v  are the rigid body mass and coriolis matrices respectively.  AM and 
( )AC v  are added mass and coriolis matrices whilst ( )D v  is the drag force. Vector ( )g η

consists of the gravity, the buoyancy forces and the moments which act on their center 
of the relevant forces. Furthermore τ , as vector of containing the control forces and 
moments, states the control surfaces ( Cτ ), the thruster (Thrust) and the environment 
forces. However the environment forces and moments, including those caused by the 
sea currents and waves are neglected. Meanwhile the linear and angular velocity vector 
ν  in the body fixed reference frame together with the position and the Euler angel 
vector η in the inertia reference frame are described by: 

[ ]     Tv u v w p q r=  (A.4) 
[ ] [ ] [ ]1 2 1 2   ,      ,    ;T Tx y zη η ϕ θ η η η= = Ψ =  (A.5) 

The relation between the body and the inertia fixed reference frame is defined by a 
coordinate transform matrix which is as follows: 

( )J vη η=  (A.6) 
1 1

2 2

( ) 0
( )

0 ( )
J

J
J

η
η

η
 

=  
 

 (A.7) 

1 2

c c s c c s s s s c c s
( ) s c c c s s s c s s s c

s c s c c
J

θ ϕ θ ϕ ϕ ϕ θ
η θ ϕ ϕ θ ϕ θ ϕ

θ θ ϕ θ ϕ

Ψ − Ψ + Ψ Ψ + Ψ 
 = Ψ Ψ + Ψ − Ψ + Ψ 
 − 

 (A.8) 

2 2

1 sin tan cos tan
( ) 0 cos      sin

sin cos0 cos cos

    θ    θ
J             -

        θ θ

ϕ ϕ
η ϕ ϕ

ϕ ϕ

 
 
 =
 
 
 

 (A.9) 
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where ( )c ⋅  and ( )s ⋅  stand for trigonometric cos( )⋅  and sin( )⋅  respectively. The six degree 
of freedom equations of motion of AUVs are expressed in Eq. (A.10) to (A.15). 
Force equation along with the x axis: 

2

2

( ) ( )sin ( ) ( ) ( )

                                           ( )

u G G wq qq G G vru u

rr G G

m X u mz q my r W B X u u X m wq X mx q my pq X m vr

X mx r mz pr Thrust

θ− + − = − − + + − + + − + +

+ + − +

   
 (A.10) 

 
Likewise, the force equation along with the y axis: 

2

2

( ) ( ) ( )cos sin ( ) ( )

                                                   ( )
r

v G G r G ur wpv v r r

pq G uv G G uu r

m Y v mz p mx Y r W B Y v v Y r r my r Y m ur Y m wp

Y mx Y uv my p mz qr Y δ

θ φ

δ

− − + − = − + + + + − + +

+ − + + + +

   

 

(A.11
) 

Similarly for the force equation along with the z axis: 

2 2 2

( ) ( ) +( )cos cos ( ) ( )

                                                         ( ) ( )
e

w G G q uq vpw w q q

rp G uw G G uu e

m Z w my p mx Z q W B Z w w Z q q Z m uq Z m vp

Z mx rp Z uw my rp mz p q Z uδ

θ φ

δ

− + − + = − + + + + + −

+ − + − + + +

     (A.12
) 

In parallel, the momentum equation along with the x axis: 
( ) +( )cos cos ( )cos sin

                                                  ( ) ( ) ( )
G G xx G B G B p pP

zz yy G

mz v my w I K p y W y B z W z B K p p

I I qr m uq vp mz wp ur KThrust

θ φ θ φ− + + − = − − − +

− − + − − − +

  
 (A.13) 

 
The same for momentum equation along with the y axis: 

( ) ( ) ( )sin ( )cos cos

                                                            ( ) ( ) ( )

G G w yy q G B G B ww q q

uq G vp G rp xx zz

mz u mx M w I M q z W z B x W x B M w w M q q

M mx uq M mx vp M I I rp

θ θ φ− + + − = − − − − + +

 + − + + + − − 

   
 (A.14) 

and finally the momentum equation along with z axis is as follows: 
( ) ( ) ( )cos sin ( )sin

                                                        ( ) ( ) ( )

                                   

G G v zz r G B G B v v r r

ur G wp G G

my u mx N v I N r x W x B y W y B N v v N r r

N mx ur N mx wp my vr wq

θ φ θ− + − + − = − + − + +

+ − + − − −

   

2                     ( )
rpq yy zz uv uu rN I I pq N uv N uδ δ + − − + + 

 

(A.15
) 

 
The value of parameters which are used in the depth plane equation of motion, Eq. 

(18), is presented here: 
Table B.I 

1 0.0669a =  4
2 4.2233 10a −= − ×

 
3 0.0146a = −  4 0.0011a =  5 1.9885a = −  6 3.6413a =  4

7 2.7080 10a −= ×

 
8 0.0692a =  8

9 1.1487 10a −− ×

 
10 0.0430a =  4

11 6.6859 10a −= ×

 
   

4
1 9.4496 10b −=− ×

 
2 0.0327b = −

 

6
3 1.3998 10b −= ×  4 0.4716b =  8

5 9.4575 10b −= ×

 
6 0.0173b = −

 
7 0.0089b = −  

8 0.1820b = −  9 0.7010b = −

 
10 0.0149b =  

8
11 6.3966 10b −= − ×

 
   

1 0.0437c = −  2 0.0143c =  3 6.4731c =  4 0.0355c = −  5 0.0044c =  6 0.0123c = −

 
7 0.0091c = −  

8 2.3354c =−  9 0.0039c =  
5

10 9.4575 10c −= − ×

 
6

11 2.9580 10c −= − ×
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