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Abstract 
In this paper a new strategy is proposed to design a fixed-structure robust 

controller for a flexible beam.  Robust controller designed by the conventional    
loop shaping method is not appropriate for a beam because of its high order and 
complicated form. Fixed-structure    loop shaping control in conjunction with 
particle swarm optimization (PSO)algorithm  is used to overcome this drawback. 
The performance and robust stability conditions of the    loop shaping controller 
are formulated as the cost function in the optimization problem. PSO is adopted to 
optimize the parameters and cost function. The proposed control design and    
loop shaping method are successfully applied on the flexible beam, and results of the 
two approaches are compared. Simulation results show the superiorities of the 
proposed controller in terms of having a lower order and simple structure; besides 
the beam stability and robust performance are retained as well. Also in comparison 
to the solutions based on genetic algorithms, the use of PSO shows better efficiency 
in terms of computational time. 
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1. Introduction 

Since the beam is a fundamental element in many structures, its control design has 
been considered as the main subject of many researches. The main class of controllers 
for these systems are linear feedback controllers designed using robust controller design 
techniques [1-5]. Also, a large number of papers have been published on the related 
problem of designing a robust feedback controller for a slewing beam, such as flexible 
robot arm [6-10]. This paper will be concerned with the problem of robust control of a 
flexible beam against uncertainties caused by parameters and modes variations of the 
system model. The  ∞ loopshaping control is an effective robust control technique that 
is most suitable for the systems with unstructured uncertainties. It was firstly developed 
by [11], and has been widely used for practical applications [12-15]. 

However, the controllers which are developed based on the conventional H ∞  loop 
shaping control design normally have the high order, and it is difficult to implement in 
reality. Basically, the lower order H ∞  loop shaping controllers can be synthesized by 
either the order reduction or the structure-specified design method. The parameters of a 
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lower order structure-specified controller are determined such that the controller is 
admissible and the H ∞  norm from the exogenous inputs to controlled outputs is 
minimized [15]. The structure-specified design method generates a complex and non-
convex optimization problem, which is difficult to solve analytically. Genetic algorithm 
(GA) and PSO are efficient in solving such multi-objective problems. GA was applied 
for tuning the parameters of the structure-specified controller before [15], however its 
computational time was considerable. PSO is one of the most efficient techniques for 
adapting parameters of fixed order controllers [17]. This method is faster than GA based 
algorithms in such problems because of its simple calculation [18,19].  

In this paper, PSO is implemented to optimize the parameters of structure-specified 
H ∞  loop shaping controller of a flexible beam. A nominal model of the beam is firstly 
shaped by a pre-compensator and a post-compensator in order to achieve a desired open 
loop shape. A structure-specified controller is then defined. Finally, PSO is used to 
search for parameters of the controller such that the cost function is minimized. 
Outcomes of the proposed method have been finally compared with the conventional 
H ∞  loop shaping approach. The comparison about the computational time of GA based 
and PSO based algorithms is also included.   

The next sections of the paper are organized as follows: Dynamics of the flexible 
beam system is described in section 2. Section 3 contains a brief presentation about the H∞ loop shaping controller design, and the proposed method is introduced completely in 
section 4. Results are shown in section 5. Finally section 6 presents the conclusion. 

2. Dynamics of flexible beam 

In this section, a formulation as a model for the experimental flexible cantilever beam 
located at the Australian Defence Force Academy (ADFA) is described. In this flexible 
beam, the control actuator is a piezoceramic patch bonded to the beam. When a voltage 
is applied to the patch, the resulting piezoceramic stress produces a bending moment in 
the beam proportional to the applied voltage. Details of the modeling process is 
included here since this modeling process is an integral part of our overall controller 
design. The approach taken in modeling the beam is an assumed modes approach. The 
parameters of the ADFA beam are shown in Table 1. For this beam, we consider the 
transfer function from   to ( , )y r t . Here ( )av t is the voltage applied to the 
piezoceramic patch and ( , )y r t  is the deflection of the beam at position r . Using the 
assumed modes approach, the following formula can be obtained: 
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where the quantities    are the real roots of the equation: 

i i λ L h λ L 01 cos cos =+  (3) 

These quantities determine the natural frequencies of the beam as follows: 
3

2 ,12, .b
i bi

wtEI I A twAω λ
ρ

= = =  (4) 

Also, note that the notation   ′( ) refer to derivative of the function  ( )i rϕ .  

By specifying r to be the location of the sensor, Equation (1) defines the transfer 
function of the beam. In practice, rather than using the infinite dimensional transfer 
function (1), we truncate this series after a finite number of modes N. In particular, in 
this paper we choose N=2. This meant that we begin solving the problem of designing a 
robust controller against beam un-modeled dynamics considering this assumption. 

Transfer function of the model can be derived as follows: 
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where K is a gain parameter and the parameter    represents the damping of each mode. 
These parameters were chosen as: 

1 24 10, 3, 0.007, 0.001 ,
3.
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Table 1. ADFA beam parameters value 

Parameter Value 
Beam length, L 1.023 m 
Beam width, w 0.04995 m 

Beam thickness,    0.00285 m 
Beam density,   2712.6 kg/   

Beam Young’s modulus, E 6.94× 10  N/   
Piezoceramic position,    0.03765 m 
Piezoceramic position,    0.10771 m 

Accelerometer 1 position, a  0.902 m 
Accelerometer 2 position, a  0.783 m 
Accelerometer 3 position, a  0.540 m 
Accelerometer 4 position, a  0.233 m 

Charge Constant,     -210× 10    m/V 
Voltage Constant,     -11.5× 10  Vm/N 

Coupling Coefficient,     -0.34  
Beam Young’s modulus,    6.9× 10  N/   
Capacitance per unit area, C 68.35  F/   

Piezoceramic width, ℎ  0.02581 m 

Piezoceramic thickness, t  0.01  
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3. H ∞  loop shaping control design 

The H∞ loop shaping controller design is based on the configuration shown in Figure 
1. The nominal model of the system is defined as P, and the shaped plant with a pre-
compensator W1 and a post-compensator  2 W2 is defined as Ps. Equation (7) presents 
the relationship of these variants as follows: 

12 1 s s
s

s s

A BP W P W M N C D
 −  
  

= = =% %  (7) 

where   ,   ,  , sC and    are the matrices of the shaped plant in the state-space 
representation.   and    are the normalized left co prime factors of Ps. 

 
Figure 1.  Robust stabilization with respect to the co prime factor uncertainties 

 
By assuming that the shaped plant is perturbed by unstructured uncertainties Δ and Δ , the perturbed plant    is presented in Equation (8). 

1( ) ( )P M M N N−
∆ = + ∆ + ∆% %  (8) 

It is proved from the small gain theorem that the shaped plant Ps is stable with all the 
unknown but bounded uncertainties M N ∞∆ ∆ p ε ‖Δ Δ ‖ < if and only if there 

exists an admissible controller    such that Equation (9) is obtained. 

1 1( ) 1/zw s
IT I P K MK γ ε

  − −  ∞∞  ∞  ∞
= + ≤ =%  (9) 

The minimization of    ( the maximization of  ε ) ) results in the maximization of the 
robustness of the system. A procedure, called the H∞ loop shaping controller design, was 
proposed in [11] and further developed in [20]. The block diagram of the H∞ loop 
shaping control is shown in Figure 2. The H∞ loop shaping controller design procedure 
is summarized as follows: 

Step 1: The nominal plant P is shaped using a pre-compensator W2 to achieve a 
desired open loop shape. W1 is used to achieve the tracking performance and 
disturbance attenuation and W2 is used to attenuate the sensor noise. W1 and W2 are 
selected so that Ps contains no hidden modes, and has the following properties. 

(i) To achieve the good tracking performance and good disturbance rejection. The 
large open loop gain at a low frequency range is required. 

(ii) To achieve the good robust stability and sensor noise rejection. The small open 
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loop gain at a high frequency range is required. 

When W1 and W2 are selected, the value of      is evaluated using Equation (10) 
where      is the maximum eigenvalue. 

1/2
max[1 ( , )]opt Z Xγ λ= +  (10) 

where Z and X are the solutions of the two following Riccati equations: 
1 1 1 1( ) ( ) 0T T T T T

s s s s s s s s s s s sA B S D C Z Z A B S D C ZC R C Z B S B− − − −− + − − + =  (11) 
1 1 1 1( ) ( ) 0T T T T T T

s s s s s s s s s s s sA B S D C X X A B S D C XB S B X C R C− − − −− + − − + =  (12) 

 

where 
T

s sR I DT
s s DR I D D = += + and T

s sS I D D= +  (13) 

W1 and W2 are adjusted until a satisfied      is achieved. If      is too large
( 4),optγ f W1 and W2 are incompatible and should be adjusted. 

 
Figure 2. Block diagram of the H ∞  loop shapingcontrol 

Step 2: Select 1
opt opt

−=pε ε γ , and then synthesis a sub-optimal controller    as 
shown in (14): 

2 1 2 1( ) ( ) ( )T T T T
s s s s s s

T T
s s

A B F Q ZC C D F Q ZCK
B X D

γ γ− − 
 ∞  
 

+ + +
=

−
 (14) 

where  
1( )T T

s s sF S D C B X−= − + and 2( ) .Q I I XZ= − +γ  (15) 

Step 3: The final controller is calculated as Equation (16): 

1 2K W K W∞=  (16) 

4. Structure-specified H ∞
 
loop shaping controller design based on PSO 

The H∞ loop shaping controller design procedure presented in section 3 is 
straightforward; and it is useful for the beam systems with the unstructured 
uncertainties. However, the obtained final controller has the high order which leads to 
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difficulties when implemented in practice. The procedure for the lower order robust 
controller design need to be investigated. A new method for designing the structure-
specified H∞ loop shaping controllers based on the PSO was introduced by [16]. The 
design procedure is described as follows: 
4.1 Selection of weighting functions 

     Since the algorithm is based on the H∞ loop shaping method, the plant is firstly 
shaped by using the pre-compensator and post-compensator. In this paper, the lead/lag 
type compensators are used for weighting functions presented in Equations (17) and 
(18). The shaped plant is thus described as Equation (19): 

1 1 1
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2 1sP W P W=  (19) 

4.2. Structure-specified controller design 
The structure-specified controller, K(s) is defined as Equation (20). 
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The structure-specified controller can be in any forms such as first order, PID, second 
order controllers etc. by selecting suitable values of m and n. 
4.3. Cost function definition 

The structure-specified H ∞  loop shaping controller design problem can be defined 
as the problem of finding the parameters of all admissible controllers represented by 
Equation (20) such that the H ∞  norm ( zwT ∞

) presented by Equation (9)‖T  ‖  is 

minimized. 
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Equation (22) is defined as the objective function of the optimization problem and it 
can be evaluated using the robust control toolbox in MATLAB. 
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4.4. PSO based design 
Once an objective function and a structure of the controller are defined, the 

procedure for solving the optimization problem based on the PSO algorithm is 
described in 5 steps as follows: 

Step 1: Set 0 1 0 11 2( , ,..., ) ( , ,..., , ,...)i i i iNx x x x a a b b= = . The number of parameters of 
the controller in Equation (20) is the particle dimension  N=m+n+1. The maximum 
number of iterations is defined as GenMax. 

Step 2: When the swarm size is H, initialize a random swarm of H particles as 
1 2[ ... ]Hx x x . 

Step 3: The fitness of particles is evaluated by the objective functions of optimization 
problem. For each generation of particles, evaluate the objective function for each 
particle using the cost function shown by Equation (22). Furthermore, the best 
previously visited position of particle i is noted as the individual best position 

1 2( , ,..., )i i i iNP P P P=  . The position of the best individual of whole swarm is noted as the 
global best position 1 2( , ,..., )NG g g g= . Determine the individual best   and global best 
G(k). 

Step 4: Update the particle velocity 1 2( , ,..., )i i i ikv v v v= , and its new position using 
Equations (23) and (24). 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i iv k v k c r P k x k c r G k x kω+ = + − + −  (23) 

( 1) ( ) ( )i i ix k x k v k+ = +  (24) 

where ω  , called inertia weight.   ,    are the random variables in the range of [0, 1].    
and    are the positive constant acceleration coefficients.   is the updated position and 

( 1)kiv +  is the updated velocity of every particle. Velocity is also limited to the range 
of max max[ , ]v v− . 

Step 5: When the maximum number of iterations is obtained, the algorithm is ended. 
If the maximum number of iterations is not obtained, go back to Step3. 

5. Results 

5.1. H ∞ loop shaping results  

The proposed algorithms and procedures presented in section 4 were used to design a 
controller to control the flexible beam deflection. The algorithms were developed and 
implemented in MATLAB. 

By substitution of the parameters in Table 1 into Equations (1) and (3) to (5), the 
nominal transfer function of the flexible beam can be described as follows: 

2

4 3 2 6
6.475 4.0302 175.77

5 3.5682 139.5021 0.0929 10
s s

s s s
P

s −
− + +

+ + + +
=  (25) 

The weighting function W1 is selected by some trials for shaping the plant. W2 is 
selected as the identity matrix with an assumption that the sensor noise is negligible.  
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,2
0.5

2000 99999
1 2

8
s

s s
W W I= +

+ +
=  (26) 

By substitution of W1 and W2 into Equation (7), and using (10) and (13), finally 
1.9741opt =γ  is obtained. The stability margin is 0.5066opt =ε , and 0.5065 opt= pε ε  

is selected. Using Equations (14) to (16), the full order controller can be described in 
(27). 

6 5 4 3 2 8 7

6 5 4 3 2
(3346 6.697 6 3.335 9 4.508 9 9.49 10 5.943 10 6.34 9)/( 5968

1.387 7 1.582 10 8.893 12 1.98 15 4.687 15 5.748 16 2.159

( )

16)

s e s e s e s e s e s e s s

e s e s e s e

K

s e s e s

s

e

+ + + + + + +

+ + + + + + +

=  (27) 

The full order controller represented above is of eighth order. Therefore, it is difficult 
to be implemented  in reality. In the next section, implementation of the first order 
controller design is demonstrated and compared with this one. Figure 3 shows the bode 
plot of the H∞ loop shaping controller and Figure 4 shows step response of the closed 
loop system and its characteristics using the full order controller. 

 
Figure 3. Bode diagram of full order controller 
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Figure 4. Step response of full order controller and its characteristics 

 
 

5.2. First order H ∞ loop shaping controller design based on PSO   

The first order controller is a structure-specified controller which is represented in 
Equation (28). The following parameters are selected as: (i) The swarm size is 40; (ii) 
The dimension of each solution candidate in the first order controller is 2 0 0( , )a b ; (iii) 

1 2 2c c= = ; and (iv) The maximum number of iterations GenMax is 50. The PSO 
algorithm is used to search for parameters of the controller 0 0( , )a b . 

1 0 0( ) / ( )s sK a b= +  (28) 

In the PSO algorithm, the weight ω  is automatically changed so that the algorithm 
converges slowly to the optimal solution at the end of the searching progress in order to 
avoid the premature convergence. The initial weight is set to 0.9=ω  , and the final 
weight is set to 0.4=ω  . The value of cost function is obtained as follows: 

cos 1( 1)t opt optJ = = =γ ε .The obtained controller is shown by Equation (29). 

1 346.8327 / 0. )) ( 1(K ss +=  (29) 

Figure 5 shows the bode diagram of full order controller and the first order one in 
two different colors. Figure 6 presents the step response of the closed loop system and 
its characteristics using the obtained first order controller. 
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Figure 5. Bode diagram of full order controller and first order one 

 

 

Figure 6. Step response of first order controller and its characteristics 
 

Convergence of the structure-specified algorithm can be seen in Figure 7. 
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Figure 7. The cost function value versus the generation number of simulation 

 

5.3. Comparison between the full order and first order controller 

Bode diagrams of the two controllers show stability of them. Step responses of the 
two systems which correspondingly use the conventional H∞ loop shaping controller and 
the proposed structure-specified H∞ loop shaping one are almost similar, but first order 
controller performance is better than the  conventional full order one because of these 
reason: the first order controller has a smaller maximum overshoot (7.72%), whereas 
this value is 13% using full order controller; and the overshoot is very important 
because the system will be oscillated and become unstable if the overshoot is too large. 
In addition, stability margin of the conventional controller is 0.5065, while the same 
value for the structure-specified controller is 1. Another significant superiority of the 
proposed approach over the conventional method is having lower order controller. 
 

5.4. Comparison between PSO based algorithm and GA based one 

In order to compare the computational time of  PSO based and GA based algorithms, 
the MATLAB Genetic Algorithm and its Direct Search Toolbox were used for adapting 
the first order controller with the following set up: (i) The population size is 40, (ii) The 
crossover fraction is 0.8, (iii) The Gaussian mutation is used (iv) The programs were 
run for ten trials on a core i2 CPU, 2.4 GHz, 4GB RAM computer. For PSO the average 
computational time of ten trials was 200 seconds, and it was 440 seconds for GA based 
approach. 
 
5.5. Robustness of the proposed controller 

Robustness of the proposed controller is tested against uncertainties of the system 
transfer function. Inaccurate measurement, external disturbances and un-modeled 
dynamics may lead to model  uncertainty. As a test case, damping of two modes,     are 
increased to the values of 0.012 and 0.009. Gain parameter K is also increased to 410  
[9]. Transfer function with uncertainties is shown in Equation (30). 
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+ + +

=
+

 (30) 

The step response of the closed loop system using the proposed first order controller for 
this test case is shown in Figure 8. The results prove that the designed first order 
controller is robust to the parameter variations, so that the system stability is attained 
through the experiment. 

 
Figure 8. Step response of first order controller under uncertainties 

6. Conclusion 

Full order H∞ loop shaping controller and structure-specified controller are designed 
for the flexible beam system in this paper, and results are finally compared to prove the 
effectiveness and superiorities of the proposed method for the beam system. According 
to the results, stability margin resulted from the proposed controller is better than the 
same value from the old method. It is revealed that the designed controller guarantees 
robustness as well. On the other hand, novel H∞ loop shaping controller has lower order 
and less complicated structure. Also, comparing the maximum overshoots, rise time and 
settling time, the structure-specified design showed better results than the conventional 
method. PSO algorithm simplified solving non-convex nonlinear optimization problem 
associated with fixed-structure controller in this process.  Collectively, the proposed 
approach is more suitable to implement for practical beam control. 
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