| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,592,918 |
| تعداد دریافت فایل اصل مقاله | 56,283,102 |
Implicit Emotion Detection from Text with Information Fusion | ||
| Journal of Advances in Computer Research | ||
| شناسنامه علمی شماره، دوره 7، شماره 2 - شماره پیاپی 24، مرداد 2016، صفحه 85-99 اصل مقاله (628.16 K) | ||
| نویسندگان | ||
| Nooshin Riahi* ؛ Pegah Safari | ||
| Computer Engineering Department, Alzahra University, Tehran, Iran | ||
| چکیده | ||
| In this paper we have proposed an approach for emotion detection in implicit texts. We have introduced a combinational system based on three subsystems. Each one analyzes input data from a different aspect and produces an emotion label as output. The first subsystem is a machine learning method. The second one is a statistical approach based on vector space model (VSM) and the last one is a keyword-based subsystem with an information fusion component to aggregate the final output of main system. We analyzed the performance of our proposed system on ISEAR dataset with seven emotions: anger, joy, sad, shame, fear, disgust and guilt. The results show that our combinational system outperforms each subsystem with overall f-measure of 0.68 and at least up to 0.71 in terms of F1 in emotion level except for anger. The overall performance of the main system is 9.13% better than machine learning module, 16.6% better than VSM and 23% better than keyword-based. | ||
| کلیدواژهها | ||
| Implicit Emotion Detection؛ Combinational System؛ Information fusion؛ Machine Learning؛ Vector Space Model؛ Keyword Based | ||
|
آمار تعداد مشاهده مقاله: 2,910 تعداد دریافت فایل اصل مقاله: 27,063 |
||