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1. Introduction

  One of the affective methods in finding the best solution in numerical problems is 
the Optimization technique. In optimization, only a few solutions are considered the 
best which are called as the goal. Classical optimization t
deficiencies on solving the complex optimization problems. These deficiencies are 
primarily interdependent on their inherent search systems. These classical optimization 
methods are strongly under effects of choosing proper objectives, 
and type of variables. They also do not grant a universal result approach that can be 
used to solve problems where various type of variables, objective and constraint 
functions
metaheuristic was designed, which is mainly originated from artificial intelligence 
research that developed by researchers 
solving the various types of hard optimization problems withou
accommodate to each problem. The Greek word meta indicates that these methods are 
higher
they are nature
behavior and etc.); stochastic components are one of the inseparable parts of these 
methods (involving random variables); they aren’t gradient base method and do
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them; at the beginning of program, they have several parameters which needs to adjusts 
properly. Metaheuristic algorithms combine various intelligent procedures and guide 
basic heuristic methods [3]. These algorithms are inspired from different things such as 
natural phenomena, natural selections and social behaviors and applied in solving the 
optimization problems. Examples of the recently metaheurtistc algorithms are Vortex 
search [4], WOA (whale optimization algorithm) [5], MBA (mine blast algorithm) [6], 
WCA (water cycle algorithm) [10], and SFS (stochastic fractal search) [8]. 

The Firefly algorithm (FA) [9] is one of the nature-inspired algorithms presented to 
perform global optimization in complex search spaces. In fact, it uses the act of firefly 
in nature and simulates behave of attraction to the flashing lights of fireflies. 

One of the population based metaheuristic algorithms is the Differential evolution 
algorithm (DE) which is modeled on Darwin’s evolutionary principle of Survival of the 
Fittest [10]. DE, like the Genetic algorithms, benefits from the Natural Selection Theory 
and uses its operators like the crossover, mutation and selection to create the new 
population for the next generation. Over the last decades, experiments on the DE 
algorithm have proven that it is the simplest algorithm which shows the best 
performance in metaheuristic algorithm for global optimization and in real parameter 
optimization. The most important difference between GA and DE is that DE uses 
distance and direction information from the current population to guide the search 
process. 

Hybridization of DE with other algorithms has been investigated in many studies. DE-
VNS [11] is a new type of hybrid method which combines two well-known 
metaheuristic approaches: Differential Evolution (DE) and Variable Neighborhood 
Search (VNS) [12], which has, in the last decade, attracted considerable attention in 
both academic circles and among practitioners. A promising new nature-inspired 
algorithm known as FA was recently proposed and has gained more attention in the 
research literature. The ACOFA [13] is the new hybridization for FA and ACO [14] 
algorithm. This hybrid algorithm has been designed to solve unconstrained optimization 
problems and FA works as a local search to refine the positions found by the ants. In 
this paper, we will combine DE and FA global optimization algorithms, and propose the 
novel hybrid algorithm based on these algorithms which are jointly called as HFADE. 
As DE has Operators like crossover and mutation, this could provide more variant 
population for FA which could help in finding lighter firefly’s algorithms. 

In the real world, many problems have been proposed and optimization problems are 
one of them [15]. The optimization problems are single or multi-objective. The multi-
objective is the problem with more than one objective function (m¿1) and single 
objective is a problem with one objective function (m=1). The main goal in this 
procedure is to seek the global minimum or maximum. The function may have more 
than one minimum or maximum which is called as the local, but only one of them is the 
global maximum or minimum. The point x* is the global minimum if f(x*)≤f(x) for all 
the x in the searching space S. Optimization problem may consist of one or more 
mathematical functions which need to be optimized. The general form of the 
optimization problem is indicated in Eq. (1). 
Minimize (f1(x),...,fm(x)), x = (x1,...,xn)  S. (1) 

Where n is the decision variables, m is the number of objectives, x is decision vector 
and S is searching space. If the problem has one objective function (m=1), then it should 
be indicated as Eq. (2). 
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easier. Flashing insects at nights are fireflies and they gather together when they have 
started the flashing. Each firefly releases small rhythmic light flashes which has a light 
intensity attraction I and this light will decrease
attracts to the other firefly which is lighter and nearer to them. Intensity of light in the 
firefly depicts its fitness value, meaning the lighter the Firefly, the more fitness one has 
over the other. This light
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Each firefly has position in searching space and the light intensity for this firefly in 
distance r is I(r) which is fitness value for di
on the square of distance. So, the I (r) varies according to the well
law. 

Fireflie
defined as
−γr2     

where γ is the light absorption coefficient.
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The new position for firefly calculated by Eq
previous position and second term is used for determining the 
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where the coefficient α is a randomization variable, and ’rand’ is a random real 
number between interval [0 1]. 

 
 

2.2 Differential Evolution (DE)      

Most of the metaheuristic algorithms start the searching space with initial population. 
These methods are population-based metaheuristic algorithms and DE is one of them 
[10]. The DE is simple to implement and requires a minimum parameter to be adjusted 
so as to make it the best for combinatorial optimization. It requires to be adjusted based 
on three parameters which are F, CR and N (population size). Parameter F is the 
weighting coefficient that is used to generate new trial solutions and CR is the crossover 
probability which is used to specify a rate of crossover. It has been argued that the DE 
algorithm is highly under the effects of choosing proper values for the CR and F, and 
hence, changing the proper amounts of F and CR during algorithm execution can boost 
its efficiency. The mutation plays the most important role in the DE algorithm, and as a 
result, it is one of the main parts of the DE. The mutation equation is as follows 
Xnewi = a i + F × (bi − ci) (8) 

Where a, b and c are random selected agents from population and i is the index from 
dimension d. The Xnew is the new agent which is created from the mutation. The DE 
algorithm is described as follows: 
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3. A Hybrid Algorithm Based on Firefly Algorithm and Differential Evolution 

The main bulk of research on the FA algorithm has been demonstrated that, in FA 
algorithm, each firefly moves to the brighter one and when it does not find any brighter 
firefly, it performs random walk. The random walk is a simple and weak operator that 
has been performed in FA. Then, this can be changed, and instead, one can use another 
strong and better operator so as to make the variation in the desired firefly. To 
circumvent this deficiency, the hybrid algorithm of FA and DE, hence forth, is called 
(HFADE) has been proposed. The DE algorithm performs the mutation and crossover 
on the one firefly which could not find a brighter firefly. When the supposed firefly 
could not find a brighter one around itself, then, it might be assumed that the supposed 
firefly is the local best. So, the DE Crossover and mutation operators apply variation to 
that local best which could help in find another better place around the firefly under 
question, and thus, avoiding the trap in local solutions. The general steps of (HFADE) 
algorithm are as follows: First, the initial population ought to be created, and then, each 
firefly should be allocated the random position and the cost (light intensity) for that 
position should also be computed. The next step is the process of firefly algorithm.  
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Fig 1. Flowchart of HFADE algorithm 

In this step, based on the value of cost (light intensity) in each firefly, if the 
preconditions of moving to another firefly are not satisfied, then, it will be used to 
perform the process of updating in firefly algorithm by Eq. (6). Otherwise, we go to the 
next step which performs the process of the DE algorithm. In DE algorithm phase, the 
mutation and crossover operators are applied on those fireflies which could not find 
their brighter counterparts and the conditions did not apply to them. The new firefly 
which has been produced by the DE is compared with the previous one. If the cost 
(light-intensity) for the newly-produced firefly is better than the previous one, then, it 
will be swapped with the previous one, and therefore, the new firefly can occupy a 
position and if the new firefly is better than the global best, then, the global best will 
also be swapped with the new firefly. Finally, in the last step, if the termination criterion 
is satisfied, then, the global best firefly should be considered the output. Otherwise, the 
next iteration will be started from firefly algorithm again. Figure 1 shows the simple 
flowchart for the proposed algorithm (HFADE). As can be seen in this figure, the 
(HFADE) is consisted of two main phases, and in each phase, it runs in parallel forms. 
The proposed hybrid (HFADE) algorithm is as follows: 
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3.1 HFADE Algorithm 

 
 

3.2 HFADE Algorithm Complexity and Convergence Analysis of HFADE 
3.2.1 Complexity Analysis 

HFADE algorithm is consists of 2 main parts and these parts are executed in parallel 
form in each cycle which are showed at the flow chart Fig. 1. In each part process is 
performed on agent of population with size of n and agent position is d dimensional 
vectors. The main operator for each part effects on time complexity. The sections that 
alter time complexity are: DE Crossover and Mutation, FA position update equation. 
We can explain complexity analysis of HFADE in worse case and prove the fastest 
execution of these two algorithms combination like this: As the HFADE algorithms are 
executed in parallel form, then in each cycle only one of the algorithms is executed. The 
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time complexity for FA is O(nd) and for DE is also O(nd), therefore the HFADE 
algorithm is run in O(nd) complexity because of the parallel form of execution in FA 
and DE algorithms. 

3.2.2 Convergence Analysis 

For analyzing convergence of the metaheursitc algorithm, Markov chain Monte Carlo 
method is the one of the preferable methods for this task [17]. Most metaheuristic 
algorithms can be sighted in the framework of Markov chain from statically viewpoint. 
Now if look at the proposed hybrid method closely using the framework of Markov 
chain Monte Carlo, each firefly in HFADE essentially forms a Markov chain and the 
appropriate better solutions which created in each phase, replace with previous one. 
Convergence analyzing based on the Markov chain for algorithm HFADE is performed 
as follows: 
Definition 1. Assume that the best firefly is shown by X  := {x   X : f(x ) = min(f(x) | x 

 X)} where X is probable solution and f is fitness function. The number of best fireflies 
in firefly population is shown by λ(N) :| N ∩ O  |. 
Definition 2. Algorithm convergence with probability 1 to the best if this condition is 
true: 
g
lim

→∞ P{ω(N(g)) ≥ 1 | N (0) = N0} = 1, where g indicates generation number and N0 is 
random initial population. 
Theorem 1. HFADE algorithm converges to its globally best solution with probability 
1. Proof: Let P0(g) = P{ω(N(g)) = 0} then the probability due to the Bayesian 
conditional probability of P0(g + 1) is 
P0(g+1) = P{ω(N(g+1)) = 0}  P{ω(N(g+1)) = 0 | ω(N(g)) 6= 0} +P{ω(N(g+1)) = 0 | 
ω(N(g)) = 0} 

Since the best solution replace with previous one in memory, this expression P {ω (N 
(g + 1)) = 0 | ω(N(g)) 6= 0} is true. 

Hence, P0(g + 1) = P {ω (N (g + 1)) = 0 | ω(N(g)) = 0} × P{ω(N(g)) = 0}. P {ω (N (g 
+ 1)) = 1 | ω(N(g)) = 0} > 0 is true because of the HFADE algorithm by two main 
phases FA and DE store the best solution. 

Make Γ = min P {ω (N (g + 1)) = 1 | ω(N(g)) = 0}, g = 0,1,2,... 
Then 

P {ω (N (g + 1)) = 0 | ω(N(g)) = 0} 
= 1 − P {ω (N (g + 1)) 6= 0 | ω(N(g)) = 0} 
= 1 − P {ω (N (g + 1)) ≥ 1 | ω(N(g)) = 0} 
≤ 1 − P {ω (N (g + 1)) = 1 | ω(N(g)) = 0} ≤ 1 − Γ < 1 

Therefore, 
0 ≤ P0(g + 1) = P {ω (N (g + 1)) = 0} ≤ (1 − Γ) × P{ω(N(g)) = 0} 
= (1 − Γ) × P0(g). such that, 0 ≤ P0(g + 1) ≤ (1 − Γ) × P0(g). 

Hence, 
0 ≤ P0(g + 1) ≤ (1 − Γ) × (1 − Γ) × P0(g − 1) ≤ ... ≤ (1 − Γ) g+1 × P0(0). 
Given that glim

→∞ (1 − Γ)g+1 = 0 and 0 ≤ P0(0) ≤ 1.  

Hence 0 ≤ glim→∞ P0(g) ≤ glim→∞ (1 − Γ) g × P0(0) = 0, 
Then lim P{ω(N(g)) ≥ 1 | ω(N (0)) = N0} 
g→∞ 
1 − glim

→∞ P{ω(N(g)) = 0 | ω(N(0)) = N0} 1 − glim→∞ P0(0) = 1. lim P0(g) = 0 g→∞ 
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There for, when g → ∞,P{ω(N(g)) ≥ 1} → 1. HFADE algorithm could reach to best 
solution and assurance convergence with probability 1.  

3.3 Parameter Adjustments and Boundary Control 

Parameter adjustment is a non-negligible task which is required to be performed 
properly in order to get a better result in solving various problems. Besides, the 
parameter adjustment also is necessary for controlling the boundary whenever the 
algorithm finds a new solution [18]. The (HFADE) needs boundary control for a Firefly 
Xi, because its position is required to be in the searching space, which is a boundary 
between [L U], (L is the lower bound and U is the upper bound of the searching space). 
The method that controls the boundary is as follows: 
p = Max(X,L),q = Min(p,U) (9) 

Where Min and Max are the functions that select the minimum and maximum among 
the input pairs, X is the input firefly position and q is the output which has been 
controlled in the boundary range [L U]. As it was alluded to previously, The DE 
algorithm is a simple algorithm and enjoys two primary parameters, F and Crossover 
rate (CR), which is required to be adjusted properly and FA has three main parameters, 
Light Absorption Coefficient (gamma), Attraction Coefficient Base Value (beta0), and 
Mutation Coefficient (alpha). So, the combination of two algorithms of FA and DE also 
enjoys these parameters. 
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experiment and paramter settings for these algorithms are explained in reference [21]. 
The parameter settings for HFADE are as follows: n=20 (populationsize), γ=2, β0=2, 
α=0.2, CR=0.2 and F ∈  [0.2 0.8]. The experiment has been performed on the computer 
with following features: CPU 2.1 GHZ, Ram 8 GB and Matlab 2013 running on 
computer with windows 10. The NFE= 500,000 (number of function evalution) was set 
as Stopping criteria and the values minimum than 1E-12, presented as 0 same as other 
methods. The mean value and Std Dev (standard deviation) have been calculated from 
30 independent runs. In Table 3, the HFADE found the minimum results for most of the 
functions with best standard deviations. It only did not reach the minimum average 
value in functions Quartic (F12), Dixon-price (F8), Michalewicz 10 (F25) and 
schewefel 1.2 (F7). The results of Friedman non-parameteric test [22] are also presented 
in this table and HFADE could rank the best with value 3.15. The low p-value indicates 
that the results are remarkably different with each other and figure 3 depicts the results 
for this test with a bar diagram. For analyzing the procedure of convergence in 
(HFADE), figure 2 has been presented.  

This figure shows the Convergence diagram for functions F19, F25, F18 and F20 in 
algorithms FA, DE and (HFADE). As it stands, HFADE has reached the desired 
minimum with minimum number of iteration and faster against the other algorithms FA, 
DE.  
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plot for the two functions, F7 and F12. In this figure, F7 is a normal distribution and 
F12 is considered abnormal. As can be inferred, in normal distributions, the results are 
in one diagonal line for QQ-plot while in abnormal distributions, this fact does not hold 
true. 

Table 3. HFADE comparison with GA, DE, PSO, BA, PBA and FA (unimodal function 
set), bold values represent the best. 

Function            Criteria            GA                       DE                       PSO                      BA                     PBA                         FA  HFADE 
(F1) Mean 0 0 0 1.88E-05 0 0 0 
 StdDev 0 0 0 1.94E-05 0 0 0 

(F2) Mean -1 -1 -1 -0.99994 -1 -1 -1 
 StdDev 0 0 0 4.50E-05 0 0 0 

(F3) Mean 0 0 0 0 0 0 0 
 StdDev 0 0 0 0 0 0 0 

(F4) Mean 0.01494 0.04091 0 1.11760 0 0 0 
 StdDev 0.00736 0.08198 0 0.46623 0 0 0 

(F5) Mean 0.01336 0 0 0 0 0 0 
 StdDev 0.00453 0 0 0 0 0 0 

(F6) Mean 11.0214 0 0 0 7.59E-10 2.73028E-10 0 
 StdDev 1.38686 0 0 0 7.10E-10 1.1535E-11 0 

(F7) Mean 7.40E+03 0 0 0 0 147.401395 8.514535 
 StdDev 1.14E+03 0 0 0 0 448.571186 8.768288147 

(F8) Mean 1.22E+03 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667 
 StdDev 2.66E+02 E-9 E-8 1.16E-09 5.65E-10 0 0 

(F9) Mean 1.17E+03 0 0 5.12370 0 0 0 
 StdDev 76.56145 0 0 0.39209 0 0 0 

(F10) Mean 1.11E+03 0 0 0 0 0 0 
 StdDev 74.21447 0 0 0 0 0 0 

(F11) Mean 1.48E+02 0 0 0 0 0 0 
 StdDev 12.40929 0 0 0 0 0 0 

(F12) Mean 0.18070 0.00136 0.00116 1.72E-06 0.00678 3.66E-03 9.70E-04 
 StdDev 0.02712 0.00042 0.00028 1.85E-06 0.00133 0.001401347 0.00125 

(F13) Mean 0.00424 0 0 0 0 0 0 
 StdDev 0.00476 0 0 0 0 0 0 
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(F14) Mean -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 
 StdDev 0 0 0 0 0 0 0 

(F15) Mean 0.06829 0 0 0 0 0 0 
 StdDev 0.07822 0 0 0 0 0 0 

(F16) Mean 0 0 0 0 0 0 0 
 StdDev 0 0 0 0 0 0 0 

(F17) Mean -186.73 -186.73 -186.73 -186.73 -186.73 -186.73 -186.73 
 StdDev 0 0 0 0 0 0 0 

(F18) Mean 1.96E+05 18.20394 15.088617 28.834 4.2831 2.02E+01 1.04E-07 
 StdDev 3.85E+04 5.03619 24.170196 0.10597 5.7877 1.147947126 2.95E-07 

(F19) Mean 10.63346 0.00148 0.01739 0 0.00468 0 0 
 StdDev 1.16146 0.00296 0.02081 0 0.00672 0 0 

(F20) Mean 14.67178 0 0.16462 0 3.12E-08 6.56E-10 0 
 StdDev 0.17814 0 0.49387 0 3.98E-08 1.24159E-09 0 

(F21) Mean 0 0 0 0 0 0 0 
 StdDev 0 0 0 0 0 0 0 

(F22) Mean 0 0 0 0.00053 0 0 0 
 StdDev 0 0 0 0.00074 0 0 0 

(F23) Mean -1.8013 -1.8013 -1.57287 -1.8013 -1.8013 -1.8013 -1.8013 
 StdDev 0 0 0.11986 0 0 0 0 

(F24) Mean -4.64483 -4.68348 -2.4908 -4.6877 -4.6877 -4.60E+00 -4.6877 
 StdDev 0.09785 0.01253 0.25695 0 0 0.092696359 0 

(F25) Mean -9.49683 -9.59115 -4.0071 -9.6602 -9.6602 -9.29521729 -9.653525 
 StdDev 0.14112 0.06421 0.50263 0 0 0.282019302 0.014947 

(F26) Mean 52.92259 11.71673 43.97714 0 0 47.88406904 0 
 StdDev 4.56486 2.53817 11.72868 0 0 16.13200446 0 

Friedman 
Test Rank 5.65 3.65 4.08 3.85 3.56 4.06 3.15 
 p-value 3.45E-07       

 Statistic 40.609       
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Table 4. Test of normality Kolmogorov-Smirnova and Shapiro-Wilk for functions 
F7,F25 and F12 

 Kolmogorov-Smirnova   Shapiro-Wilk   

 Statistic df p-value Statistic df p-value 

F7 0.1719999 20 0.125 0.858999 20 8.0002E-3 
F25 0.4219999 20 0.000  0.4839999 20 0.000 
F12 0.5270000 20 0.000 0.3579999 20 0.000 

 

 
 (a) Griewank Function 30D (b) Michalwicz Function 10D 

 
 (c) Rosenbrock Function 30D. (d) Acley Function 30D 

Fig 2. Convergence diagram for functions F19, F25, F18 and F20 in algorithms FA, DE 
and HFADE 
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Fig 3. Bar diagram for non-parametric Friedman test results for Functions F1-F26. 
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Fig 4. From top to down respectively: Histogram, Q-Q Graphic and Box plot for functions F7 and F12 
results on HFADE algorithm. Left plots are normal for F7 and the Right are abnormal for F12. 

5. Conclusion 

The FA is, arguably, one of the most efficient nature-inspired metaheuristic 
algorithms, which has outperformed most of the algorithms in solving the various 
optimizing numerical problems. Furthermore, one of the practical metaheuristic 
algorithms which have been used most widely in the optimization is the DE. The DE 
algorithm is a simple and practical algorithm which is more amenable to combination 
with others. In the current study, the FA and DE algorithms are combined in order to 
design a new hybrid method for seeking the global solution. The proposed hybrid 
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algorithm begins to search from the FA algorithm if the precondition for entering the 
FA algorithm is not satisfied the process is passed to the DE which makes the alteration 
with crossover and mutation operators on the agent of population. The experiment based 
on benchmark functions and non-parametric ranking shows that the proposed hybrid is 
more dominant and competent than other famous algorithms. Moreover, based on the 
results of the test of normality and convergence, this proposed hybrid algorithm mostly 
has abnormal distributions for results and converges to the optimum solutions in 
minimum number of iterations. 
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