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Abstract 

In this manuscript we suggest a fast adaptive distributed method for maximum 

likelihood approximation (MLA) in multiple view object localization problem. For 

this purpose, we use "up to scale" property of projective geometry and by defining 

coefficients for convergence criterion, we increase the convergence speed of the 

consensus algorithm. We try to present a mathematical model for the problem. We 

use two types of error function. The proposed method uses maximum likelihood for 

obtaining its best parameters. Our approach utilizes "up to scale" property in 

projective geometry to reach the consensus quickly. The difference between nodes' 

values and meanwhile consensus values are evaluated by two error functions. To 

estimate consensus value in the second error function, we used local weighted 

average of each node. At the last of the paper, we prove our claims by experimental 

results. 
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1. Introduction 

Increasing interest in wireless sensor networks, the use of the multiple-view structure 

in the object tracking applications rises [11, 7, 3, and 22]. Projective geometry is used as 

a mathematical tool for the multiple-view tracking systems. Data of a scene from all the 

views should be illustrated in the same coordination, namely global coordination. 

Relations between cameras' coordination and any arbitrary global coordination are 

described by homography which is a popular nonlinear transformation (in Euclidean 

geometry) in multi-view schemes. The use of homography implies that the cameras’ 

data are represented in the projective geometry rather than Euclidean geometry (or any 

other geometry) [5]. The most important property of the projective geometry is their 

ability to preserve data insensitive to scale. Though the relation between each camera 

coordination and global coordination in Euclidean geometry is nonlinear, this relation in 

the projective geometry has a linear form. With this linear model maximum likelihood 

approximation is a good choice to approximate the objects' coordination in multi-view 

tracking systems. 

Distributed data fusion is another important issue in the sensor networks applications 

[21, 14]. It increases the system's ability in dealing with the failure in any part of the 

network. Consensus algorithm is an efficient solution in distributed approaches in many 
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applications such as beam forming [23], spectral sensing in cognitive radio [24, 1, 13, 

and 18], target tracking [25, 9, and 19] and adaptive filters [20]. Because of the 

improvements and the extension ideas in sensor and multi-agent networks, consensus 

algorithm is also used in data fusion [21, 4, and 12] in the recent years. In this procedure 

each node communicates only with its neighbors and after several iterations, nodes 

reach the consensus in the whole network. Actually, this consensus value (values) can 

play the role of an auxiliary variable or a cost function in the network and help(s) us 

reaching the final purpose [10]. Consensus algorithm is organized in Euclidean 

geometry and all iterations and its convergence criterion are described in this geometry 

[17, 15]. In [16] a new criterion for convergence in the Riemannian manifold is 

introduced. Though the projective geometry is a special type of Grassmann geometry 

[2] and Grassmann geometry itself is a kind of Riemannian geometry. In this work we 

don’t use Riemannian manifold criterion for consensus because the convergence of 

Riemannian consensus criterion isn’t guaranteed in every situations. Instead, we 

propose a new convergence criterion in the projective geometry. 

In this paper, we propose a consensus based MLA for the object localization in the 

projective geometry. For this purpose, we apply a modification in the Euclidean 

consensus criteria and use this new criterion for consensus in the projective geometry. 

This paper is organized as follows. In the next section, a short explanation of the 

consensus procedure comes. Then the description of the distributed MLA algorithm 

which is presented in [21] is developed. The problem statement and our proposed 

procedure are introduced in section 4. Finally, in section 5, with the numerical results 

we show our proposed scheme performance with respect to the traditional consensus 

algorithms. Then the paper is terminated by a conclusion. 

2. Consensus Procedure 

Consider a connected sensor network modeled by a digraph = ( , , )G V E A  with N  

edges, where 1 2= { , ,..., }Nv v vV  is the set of nodes,  E V V  is the set of edges so that 

( , )i jv v E  if there is an edge between the thi  and the thj  nodes and A  is the digraph 

adjacency matrix . Let ( )i kx  as the vector value of the thi  node at the moment k . If all 

sensors’ values are represented as  1( ) = ( ) ... ( )Nk k kX x x , consensus algorithm 

will prepare as iterative procedure forcing all sensors’ values tend to an consensus value 

(vector in here), named consensus value [10]. The maximum, the minimum consensus 

and the weighted average consensus are several usual consensus values which are used 

in many applications [8]. Different iterative procedures could be used, depending on the 

definition of the consensus value. The algorithm’s policy to reach the final consensus 

value is named the consensus protocol [8]. However, the computation of the weighted 

average is the most important consensus algorithm. By the above definition about the 

network topology and nodes’ value, the weighted average consensus is defined as 

below: 

( ) = (0)lim
T

i
k

k


x w X
 (1) 
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Where w  is a 1N   vector indicates the weight of each sensor in obtaining process of 

the final consensus vector. Equation (1) indicates that all nodes reach to the identity 

vector in convergence. The consensus protocol in this case is:  

( ) = ( 1) = (0)kk k X DX D X  (2) 

Where D  is an N N  matrix named consensus matrix. The component ijd  of D  is 

equal to zero if ( , )i jv v E . To reach the consensus, the consensus matrix and its 

corresponding graph must have the specific properties. This matrix must be nonnegative 

matrix (have no negative entry) and right stochastic. Also, the corresponding graph on 

which the consensus matrix is defined must be connected. Nonnegativity and being 

right stochastic of D  guarantee that all eigen values of D  rely inside unit circle based 

on Gershgorin’s Disc theorem [6]. Moreover, the second property implies that 1 will be 

an eigenvalue of D  and its associated eigenvector is such that all its entries are one. The 

third property satisfies that this eigenvalue is first order geometry [10]. In [21, 8, 20] 

several methods for construction of the consensus matrix are represented. In all of the 

mentioned methods in [21, 8, 20] network’s digraph must be a connected graph. If D  is 

a double stochastic matrix, the weighted average in (1) will tend to the geometric 

average. 

 

Theorem 1 The consensus protocol in (2) induces to the weighted average consensus 

defined in (1) [10].  

Proof: By substituting singular value decomposition of D :  

 
1= 

D V VL   

 

Where V  is a N N  unitary matrix, its columns are eigenvectors of the consensus 

matrix and L  is a diagonal matrix with eigenvalues of D  corresponding to V  matrix 

columns as its entries, we can rewrite (2) as:  

 
1( ) = (0) = (0)k kk 

X D X V V XL   

 

As all eigenvalues of D  rely inside unit circle and 1 is the first order eigenvalue, all 

the diagonal entries of L  are tended to zero except one. Without loss of generality, 

assume 
Nv  is the eigenvector corresponding to 1 as its eigenvalue, so:  

 

 = = = ...
Tk T T T

N N N N N ND v u 1 u u u   

 

Where N1  is a vector with all entries equal by one and T

Nu  is the thN  row of 1
V . 

Thus, the weight vector in (1) is equal with T

Nu . 

3. Distributed MLA in Sensor Networks 

With the same assumption for the network in the previous section, suppose that the 
thi  node measures a vector with dimension im  for unknown parameter m R  as:  
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= i i iy A  (3) 

is the zero mean white Gaussian noise  iis a known matrix and  
m m

i
i


A Rwhere 

is  imation of as its covariance matrix. The maximum likelihood est iSvector with 

obtained by:  

1ˆ =ML 
S q  (4) 

where:  

1

=1

=
N

T

i i i

i

S A AS  (5) 

1

=1

=
N

T

i i i

i

q A yS  (6) 

By defining 
1(0) = T

i i i i


S A AS  and 

1(0) = T

i i i i


q A yS , distributed consensus based 

solution for MLA is obtained by these iterative equations [21]:  

=1

( ) = ( 1)
N

i ij j

j

k d k S S  (7) 

=1

( ) = ( 1)
N

i ij j

j

k d k q q  (8) 

1

,
ˆ ( ) = ( ) ( )ML i i ik k k S q  (9) 

as the  Ds’ are entries of matrix ijdnode and  thiis the MLA of the  ,
ˆ
ML iwhere 

consensus matrix. Considering the results in the previous section: 

1

=1

1 1
( ) = =lim

N
T

i i i i
k i

k
N N




S A A SS  (10) 

1

=1

1 1
( ) = =lim

N
T

i i i i
k i

k
N N




q A y qS  (11) 

,
ˆ ˆ( ) =lim ML i ML

k

k 


 (12) 

So, implementation of two consensus algorithm for obtaining S  and q  are induced to 

distributed solution for the MLA. In the next section we provide a modification in this 

procedure in order to increase the speed of convergence.  

4. Object Localization 

A. Problem Statement  
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Consider a network digraph mentioned in section 2 which monitors a plane for object 

detection. By assuming an arbitrary object on the plane as   2= , ,x y z p P  1 in 

homogeneous coordination (equal to   2/ , /x z y z R ), each camera registers this 

object as 2= ( , , )i i i ix y z p P , i V  in its local coordination. Projective geometry 

NP  is equivalent to ,1NG  2, so the object location can be represented on the Riemannian 

Geometry. If 3 3

i

H R  denotes a homography between reference and the thi  camera 

coordination 3, then relation between the object coordinate in each camera ( ip ) and the 

reference coordinate ( ip ) is described as =i i ip H p  [5]. Based on the previous section 

results, Algorithm 1 shows the distributed MLA for object in the plane and obtains 
MLp

, where > 0  is an arbitrary positive constant, ijd  are the entry of consensus matrix, 

,ML ip  is the MLA of object position in the thi  node and ( )kM  is equal to:  

1

=1

1 1
( ) = =lim

N
T

i i i i
k i

k
N N




S A A SS  (13) 

 

 
B. The proposed Approach  

In this subsection, we introduce an approach to increase the speed of the consensus 

convergence. In our proposed procedure, we don’t use Riemannian consensus because 

Riemannian consensus is converged to Frechet mean and its convergency is not 

guaranteed [16]. Instead, we propose a modified Euclidian consensus on Projective 

geometry. Our algorithm uses this property of homogenous geometry that  , ,x y z  and 

 , ,x y z   , where   is a nonzero coefficient, show the same point in 2R  geometry 

(equal to  / , /x z y z ). As mentioned in the introduction, the consensus algorithm and 

convergence to consensus in the network are based in the Euclidean geometry, while 

our problem is stated in the projective geometry. Therefore, because of "up to scale" 

property of projective geometry, there are infinity options to represent object location in 

                                                           
1
 Projective Geometry 
2 Grassmann Geometry 
3 It depends on calibration matrix and the position of each camera [5] 
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the projective geometry. For example, suppose the final object location in the plane is 

 , ,x y z . In this situation there is no difference whether the consensus algorithm 

reaches to  , ,x y z  or  , ,x y z   , as both of these points show the same point in 

the Euclidean geometry. 

Based on the above mentioned point, let an object localization problem with Cp  be as 

the final consensus point. In each iteration, the consensus algorithm induces to each 

node’s value ( )i kp  tended to Cp  ( ( ) , {1,2,..., }i Ck i N p p ). In this work, as data 

represented in the homogenous coordinates, at each moment, tending ( )i kp  to any 

multiplied value of Cp  causes the same point in 2R . Moreover, tending any multiplied 

value of ( )i kp  to any multiplied value of ( )C kp  has the same results. So, in our 

approach, the consensus procedure can be summarized in an attempt to establish a 

relationship ( ) ( ) ( )i i i Ck k k p p , or 
( )

( )
( )

i
i C

i

k
k

k




p p . Based on what was 

mentioned in the above, we can compute coefficients ( )i k  and ( ), {1,2,..., }i k i N  , 

so that algorithm converges to the final values faster. For better imagination, consider a 

problem in 1P  geometry by a set of two tuple vectors as ( ), {1,2,3}i k i p  initialized 

in the below:  

 

1 2 3

6 2 4
(0) = , (0) = , (0) =

7 4 13

     
     
     

p p p   

 

Let consensus matrix be:  

 

0 0.5 0.5

0.5 0.5 0
=

0.5 0 0.5

 
 
 
 
 
 

D   

 

Regarding to this configuration, the final consensus vector equals to  = 4 8
T

Cp . 

Figure. 1 shows the iterative changes in ( )i kp  for nodes 2  and 3  under the consensus 

algorithm. As shown in Figure. 1 at first iteration 30.8 (1) Cp p  and in second iteration 

20.48 (2) 0.42 Cp p . In other words, 3p  reaches the final consensus value after first 

iteration and 2p  reaches the final consensus after two iterations. All of the lying points 

on solid line are equal in R  geometry and only have a difference in an scale factor. 

More consideration on Figure. 1 shows that initial value of 2p  is equal to Cp . So, 2p  

does not need to be changed in iterative consensus algorithm and it can be introduced as 

the final consensus value. Therefore, we can propose Algorithm 2 for object 

localization. The only difference between two algorithm is in the convergence 

condition. In the next subsection we introduce an approach for obtaining a  and g  

values. 
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Fig. 1. Up-to scale property in
1P . 3p reaches consensus, almost, at =1k  by setting 3(1) = 0.8  

and
3(1) =1 . Also 2p  gets consensus, approximately, at = 2k  by setting 

2(2) = 0.48  and

2(2) = 0.42 . 

   

  

 

C. Obtaining ,  Values  

In order to obtain a,g  values, two global error functions are considered as follows: 

2

, =1

( )( )
( ) = ( ) ( )

( ) ( )

N
ji

i j

i j i j

kk
E k k k

k k



 
 p p  (14) 
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2

=1

( )
( ) = ( )

( )

N
i

i C

i i

k
k k

k




  p p  (15) 

( ) = ( ) ( )k E k k   (16) 

( )E k  satisfies the consensus between weighted nodes’ values and ( )k  induces 

convergence to the final consensus vector. The optimum proportion of 

( ) = ( ) / ( )i i ik k k    is computed when ( )k  is minimized. Therefore, we obtain it 

by computing the following equations linearly: 

( )
= 0 {1,2,..., }

( )i

k
i N

k









 (17) 

However equations (14) and (15) cannot be calculated in a distributed way. Moreover, 

the final consensus values are interested and in each iteration, these values are 

unknown. Therefore we develop the following node’s error function. 

2

( )( )
( ) = ( ) ( )

( ) ( )

ji
i i j

j N i ji

kk
E k k k

k k



 

 p p  (18) 

2

( )( )
( ) = ( ) ( )

( ) ( )

ji
i i j

j N i ji

kk
E k k k

k k



 

 p p  (19) 

2

,

( )
ˆ( ) = ( ) ( )

( )

i
i i C i

i

k
k k k

k




 p p  (20) 

 

where 
iN  is the set of thi  node’s neighbors. 

In (19) ,
ˆ ( )C i kp  is an approximation of Cp  in the thi  node. An estimation value for 

,
ˆ ( )C i kp  is demonstrated in the next section. 

Now, we calculate ( ) / ( ) = 0i ik k    to obtain proportion ( ) / ( )i ik k  . After 

some calculations, we have: 

,

,

( )1
ˆ( ) ( ) ( )

( )( )
=

ˆ( ) 2 ( )

j T T

i j i C i

j Ni ji i

T

i i C i

k
k k k

N kk

k k









 p p p p

p p
 (21) 

 

The first term in the numerator of (21) is induced by iE  and the second term is 

induced by i . By using (21) in each iteration we can obtain appropriate coefficients to 

reach the consensus. In the next section, simulation results of the convergence 

procedure would be shown. 
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5. Experimental Results 

In this section, we present simulation results of our proposed approach. For this 

purpose, we construct a static random connected network. Also, we select maximum-

degree weighted matrix [21] as the consensus matrix. We use random  matrices for 

simulating calibration matrix of cameras and add independent white Gaussian noise to 

the measurements. The results are obtained by averaging over  epoches by different 

random initial values. To approximate , different strategies such as local averaging 

of each node and local weighted averaging of each node (based on the consensus 

matrix’s rows values) can be used. Simulation results verified the performance of these 

choices. In this paper, we use the latter. So, the estimated value is obtained as below:  

         (22) 

 

 
Fig. 2. Number of Iterations versus different network sizes in the  node for  

 

 

Fig. 3.  in the  node for  

3 3

100

Cp

,

=1

ˆ ( ) = ( )
N

C i ij j

j

k d kp p

5 10 15 20
0

200

400

600

800

Network Size

It
er

a
ti

o
n

n
u
m

b
er

s

 

 

Dist ributed Approach
Ideal Fast Approach
Fast Dist ributed Approach

19th
S

0 50 100 150 200
0

0.5

1

1.5

2

 

 

Iterat ion numbers

-
(k

)
=

,
(k

)

.
(k

)

Ideal Fast Approach
Fast Dist ributed Approach




19th

S



 

Distributed Agreement Based Ml … M. Mohamadi, H. Parvin, E. Faraji, S. Parvin 
 

 

76 

 

Fig.4. Number of iterations versus different network sizes and  in the  node for  

 

 

Fig. 5.  in the  node for  

 

 Obviously, when  increases, the above equation tends to . Figure. 2 and Figure. 

4 show the number of iterations which needed to reach consensus for  and  in 

different sizes of camera networks. The ideal fast approach uses real value of the final 

consensus vector( ). Therefore, it has the best results, but it can’t be realized. As 

shown in the figures, our proposed method (fast distributed approach) has significant 

improvement with respect to the standard consensus algorithm. Finally in Figure. 3 and 

Figure. 5, the ratio of  and  in the  node for a  cameras network is shown. 

Our approach has a fluctuational behavior in the first iterations, as we used 

approximated function instead of ; however, by passing the time and tending 

 to , the distributed approach ratio is converged to the ideal one.  
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6. Conclusion 

In this paper, we introduce a fast and distributed maximum likelihood estimation 

using the consensus algorithm. Our approach utilizes "up to scale" property in 

projective geometry to reach the consensus quickly. The difference between nodes’ 

values and meanwhile the difference between nodes’ values and consensus values are 

evaluated by two error functions. To estimate consensus value in the second error 

function, we used local weighted average of each node. Experimental results show that 

this estimation can improve the convergence speed. 
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