تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,189 |
تعداد دریافت فایل اصل مقاله | 54,843,848 |
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm | ||
Journal of Computer & Robotics | ||
مقاله 6، دوره 7، شماره 1، اردیبهشت 2014، صفحه 57-66 اصل مقاله (334.03 K) | ||
نویسندگان | ||
Rasool Azimi* 1؛ Hedieh Sajedi2 | ||
1Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran | ||
2Department of Computer Science, College of Science, University of Tehran, Tehran, Iran | ||
چکیده | ||
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K-Means, which alters the convergence method of K-Means algorithm to provide more accurate clustering results than the K-means algorithm and its variants by increasing the clusters’ coherence. Persistent K-Means uses an iterative approach to discover the best result for consecutive iterations of K-Means algorithm. | ||
کلیدواژهها | ||
Data mining؛ Clustering؛ K-means؛ Persistent K-Means | ||
آمار تعداد مشاهده مقاله: 1,215 تعداد دریافت فایل اصل مقاله: 710 |