| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,582,910 |
| تعداد دریافت فایل اصل مقاله | 56,278,013 |
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm | ||
| Journal of Computer & Robotics | ||
| مقاله 6، دوره 7، شماره 1، اردیبهشت 2014، صفحه 57-66 اصل مقاله (334.03 K) | ||
| نویسندگان | ||
| Rasool Azimi* 1؛ Hedieh Sajedi2 | ||
| 1Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran | ||
| 2Department of Computer Science, College of Science, University of Tehran, Tehran, Iran | ||
| چکیده | ||
| Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K-Means, which alters the convergence method of K-Means algorithm to provide more accurate clustering results than the K-means algorithm and its variants by increasing the clusters’ coherence. Persistent K-Means uses an iterative approach to discover the best result for consecutive iterations of K-Means algorithm. | ||
| کلیدواژهها | ||
| Data mining؛ Clustering؛ K-means؛ Persistent K-Means | ||
|
آمار تعداد مشاهده مقاله: 1,221 تعداد دریافت فایل اصل مقاله: 715 |
||