تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,310 |
تعداد دریافت فایل اصل مقاله | 54,843,931 |
An Approach to Reducing Overfitting in FCM with Evolutionary Optimization | ||
Journal of Computer & Robotics | ||
مقاله 2، دوره 5، شماره 1، اردیبهشت 2012، صفحه 7-13 اصل مقاله (156.75 K) | ||
نویسنده | ||
Seyed Mahmood Hashemi* | ||
School of Computer Engineering, Darolfonoon High Educational Institute, Qazvin, Iran | ||
چکیده | ||
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the fuzzy model. Two new cost functions are developed to set the parameters of FCM algorithm properly and the two evolutionary optimization algorithms, i.e. the multi-objective simulated annealing and the multi-objective imperialist competitive algorithm, are employed to optimize the parameters of FCM according to the proposed cost functions. The multi-objective imperialist competitive algorithm is the proposed algorithm. | ||
کلیدواژهها | ||
Overfitting؛ fuzzy system modeling؛ FCM؛ multi-objective optimization | ||
آمار تعداد مشاهده مقاله: 1,299 تعداد دریافت فایل اصل مقاله: 524 |