- Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS. Microalgae-based biorefinery from
biofuels to natural products. Bioresour Technol. 2013; 135: 166-174. 2. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzaei H, Mirzajanzadeh M, Shafaroudi S, Bakhtiari S. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013; 2(3): 258-267. 3. Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013; 52(4): 395-408. 4. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol. 2016; 37: 24-35. 5. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei M. Biochemical modulation of lipid pathway in microalgae Dunaliella sp. for biodiesel production. Biomed Res Int. 2015; 2015: 1-12. 6. Donot F, Fontana A, Baccou J, Strub C, Schorr-Galindo S. Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy. 2014; 68: 135-150. 7. Adrio JL. Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng. 2017; 144(19): 1915-1920. 8. Beopoulos A, Nicaud J-M, Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol. 2011; 90(4): 1193-1206. 9. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014; 15(12): 771-778. 10. Bruen R, Fitzsimons S, Belton O. Atheroprotective effects of conjugated linoleic acid. Br J Clin Pharmacol. 2017; 83(1): 46-53. 11. Passoth V. Lipids of yeasts and filamentous fungi and their importance for biotechnology. Biotechnology of Yeasts and Filamentous Fungi: Springer; 2017; 83(1): 149-204. 12. ača , arcinčá , Čertí , pel a , arcinčá á , t á , lnár , lemp á , as aľ á . ffect f a in prefrmente cereal pr ct c ntainin gamma-linolenic acid to broiler feed on production indicators and fatty acid profile of chicken breast. Acta Ve Brno. 2014; 83(4): 379-384. 13. Madani M, Enshaeieh M, Abdoli A. Single cell oil and its application for biodiesel production. Process Saf Environ. 2017; 92(3): 46-53. 14. Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008; 80(5): 749-756. 15. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006; 101(2): 87-96.
16. Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol. 2017; 37(1): 37-52. 17. Shaojin Y, Yiping Z. Research and application of oleaginous microorganism. China Foreign Energy. 2006; 2: 21-32. 18. Xue F, Zhang X, Tan T. Research advance and prospect in microbial oils. Chinese J Bioprocess Engin. 2005; 3(1): 23-27. 19. Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol. 2008; 24(9): 1703-1659. 20. Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochem. 2004; 86(11): 807-815. 21. Haslam TM, Kunst L. Extending the story of very-long-chain fatty acid elongation. Plant Sci. 2013; 210: 93-107. 22. Koolman J, Röhm KH, Wirth J, Robertson M. Color atlas of biochemistry. Thieme Stuttgart; 2005; 120: 120-152. 23. Berg JM, Tymoczko JL. Biochemistry/Jeremy M. Berg, John L. Tymoczko, Lubert Stryer; web content by Neil D. Clarke. 1998; pp: 524-560. 24. Zhang JY, Kothapalli KS, Brenna JT. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr Opin Clin Nutr. 2016; 19(2): 103-110. 25. Kosa M, Ragauskas AJ. Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol. 2011; 29(2): 53-61. 26. Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res. 2008; 47(3): 157-171. 27. Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol. 2009; 141 (1): 31-41. 28. Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani k, Tabatabaei M. Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J. 2014; 1(3): 91-97. 29. Yang S, Wang W, Wei H, Van Wychen S, Pienkos PT, Zhang M, Himmel M. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species. Energies. 2016; 9(9): 685-699. 30. Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol. 2010; 37(12): 1271-1287. 31. Ruenwai R, Cheevadhanarak S, Laoteng K. Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol Biotechnol. 2009; 42(3): 327-332. 32. Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering
Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng. 2016; 113(5): 1056-1066. 33. Feng D, Chen Z, Xue S, Zhang W. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol. 2011; 102(12): 6710-6716. 34. Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry. 2006; 67(7): 696-701. 35. Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J. Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels. 2012; 5(1): 1-25. 36. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng. 2010; 107(2): 258-268. 37. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol. 2008; 74(9): 2573-2582. 38. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis K, Steinbüchel A. Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007; 189 (3): 918-928. 39. Zhang X, Li M, Agrawal A, San KY. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng. 2011; 13(6): 713-722. 40. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy. 2009; 33(4): 573-580. 41. Čertí , altesz , Ša bi r J. ipi f rmati n an γ-linolenic acid production by Mucorales fungi grown on sunflower oil. Lett Appl Microbiol. 1997; 25(2): 101-105. 42. Zhu L, Zong M, Wu H. Efficient lipid production with Trichosporonfermentans and its use for biodiesel preparation. Bioresour Technol. 2008; 99(16): 7881-7885. 43. Xu J, Du W, Zhao X, Zhang G, Liu D. Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuel Bioprod Bior. 2013; 7(1): 65-77. 44. Cheirsilp B, Kitcha S, Torpee S. Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Ann microbiol. 2012; 62(3): 987-993. 45. Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rdodosporidium toruloides DMKU3-TK16. Kasetsart J Nat
Sci. 2010; 44: 436-445. 46. Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010; 101(14): 5494-5500. 47. Tang S, Chen M, Yang J, Ni Q, He D, Chen T. Research of producing oil by Mortierella isabellina. China Oils Fats. 2007; 32(12): 35-37. 48. Wu S, Hu C, Jin G, Zhao X, Zhao ZK. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol. 2010; 101(15): 6124-6129. 49. Esakkimuthu S, Krishnamurthy V, Govindarajan R ,Swaminathan K. Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenergy. 2016; 88: 126-134. 50. Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii. Front Microbiol. 2015; 6: 912-918. 51. Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour Technol. 2013; 129: 150-155. 52. Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014; 155: 204-212. 53. Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol. 2011; 102(3): 3034-3040. 54. Kim JH, Choi SK, Park YS, Yun C-W, Cho WD, Chee KM, Chang H. Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1. J Microbiol Biotechnol. 2006; 16(3): 438-442. 55. Kruszewska J, Palamarczyk G, Kubicek CP. Stimulation of exoprotein secretion by choline and Tween 80 in Trichoderma reesei QM 9414 correlates with increased activities of dolichol phosphate mannose synthase. Microbiol. 1990; 136(7): 1293-1298. 56. Dalmau E, Montesinos J, Lotti M, Casas C. Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb Technol. 2000; 26(9): 657-663. 57. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioprocess Eng. 2011; 16(1): 23-33. 58. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011; 90(4): 1219-1227.
59. Beltran G, Novo M, Guillamón JM, Mas A, Rozès N. Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int J Food Microbiol. 2008; 121(2): 169-177. 60. Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies. 2012; 5(5): 1532-1553. 61. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz G. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol. 2008; 99(8): 3051-3056. 62. Einicker-Lamas M, Mezian GA, Fernandes TB, Silva FLS, Guerra F, Miranda K, Attias M, Oliveira M. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut. 2002; 120(3): 779-786. 63. Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol. 2008; 99(11): 17-22. 64. Yen HW, Zhang Z. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis. Bioresour Technol. 2011; 102(19): 9279-9281. 65. Nielsen J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. MBio. 2014; 5(6): 2141-2153. 66. Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng. 2013; 15: 1-9. 67. Runguphan W, Keasling JD. Metabolic engineering. of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014; 21: 3-13. 68. Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng. 2008; 10(6): 333-339. 69. Voelker TA, Davies HM. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol. 1994; 176(23): 7320-7327. 70. Zheng Z, Zou J. The initial step of the glycerolipid pathway identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem. 2001; 276(45): 14710-14716. 71. Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem. 2002; 277 (41): 39035-39044. 72. Olukoshi ER, Packter NM. Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiol. 1994; 140(4): 931-943. 73. Qiao K, Abidi SHI, Liu H, Zhang H, Chakraborty S, Watson N, Ajikumar P, Stephanopoulos G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015; 29: 56-65.
74. Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over‐expression of a yeast glycerol‐3‐phosphate dehydrogenase under the control of a seed‐specific promoter. Plant Biotechnol J. 2007; 5(3): 431-441. 75. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M-T, Hapala I, Papanikolaou S, Chardot T, Nicaud J. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol. 2008; 74; 7779-7789. 76. Dulermo T, Nicaud J-M. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng. 2011; 13 (5): 482-491. 77. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 2015; 21(6): 805-821. 78. Lin H, Castro NM, Bennett GN, San K-Y. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in Metabolic engineering. Appl Microbiol Biotechnol. 2006; 71 (6): 870-874. 79. Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett. 2014; 36(8): 1557-1568. 80. Hou L, Shi D, Cai Z, Song D, Wang X. Regulation of lipids synthesis in transgenic Escherichia coli by inserting Cyanobacterial sense and antisense pepcA gene. China Biotech 2008; 52: 25-28. 81. Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Xian M, Zhang Y. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol. 2011; 38(8): 919-925. 82. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009; 48(6): 375-387. 83. Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H, Baker S, Machida M. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol. 2013; 97(1): 269-281. 84. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M. Mutants of Saccharomyces cerevisiae deficient in acyl‐CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J. 2008; 275(11): 2765-2778. 85. Beopoulos A, Chardot T, Nicaud J-M. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochem. 2009; 91(6): 692-696. 86. líč á , , t enstae t , ' n rea , a m , ar t , Nica J. ipi accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol. 2004; 70(7): 3918-3924.
87. Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res. 2004; 43(2): 134-176. 88. Todd BL, Stewart EV, Burg JS, Hughes AL, Espenshade PJ. Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell Biol. 2006; 26(7): 2817-2831. 89. Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen Y, Zhang H, Chen W. Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microb Cell Fact. 2013; 12: 70. 90. Najafi G, Ghobadian B, Tavakoli T, Yusaf T. Potential of bioethanol production from agricultural wastes in Iran. Renew Sust Energ Rev. 2009; 13(6): 1418-1427. 91. Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M. Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev. 2011; 15(4): 1918-1927. 92. Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR. CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res. 2014; 6: 78-85. 93. Madadi R, Pourbabaee AA, Tabatabaei M, Zahed MA, Naghavi MR. Treatment of petrochemical wastewater by the green algae Chlorella vulgaris. Int J Environ Res. 2016; 10 (4): 555-560. 94. Najafi G, Ghobadian B, Yusaf TF. Algae as a sustainable energy source for biofuel production in Iran: a case study. Renew Sustainable Energy Rev. 2011; 15(8): 3870-3876. 95. Abdoli A, Enshaeieh M, Nahvi I, Madani M. Isolation of oleaginous yeasts and optimization of lipid production using taguchi design. New Cell Mol Biotechnol J. 2012; 4(14): 13-20. 96. Ghasemi L, Samadlouie H, Jalali H, Gharanjik S. Isolation and identification of Candida orthopsilosi SAGSGC as oleaginous yeast in perch fish by using ribosomal gene and optimization of oil and biomass production. J Agr Food Chem. 2017; 14(70): 1-12. 97. Pourbabaee A, Mondaniizadeh M. Single cell oil production from petroleum sludge by native yeast strains. J Rene Energy Environ. 2014; 2: 19. 98. Enshaeieh M, Abdoli A, Madani M. Single cell oil (SCO) production by Rhodotorula mucilaginosa and its environmental benefits. J Agr Sci Tech. 2015; 17(2): 387-400. 99. Enshaeieh M, Abdoli A, Nahvi I, Madani M. Bioconversion of different carbon sources in to microbial oil and biodiesel using oleaginous yeasts. J Biol Todays World. 2012; 1(2): 82-92. 100. Shafiei N, Beheshti MK, Madani M. Isolation, optimization, and investigation of production of linoleic acid in Aspergillus niger. Qom Univ Med Sci J. 2016; 10(6): 24-31. 101. Mohammadi Nasr M, Nahvi I, Biria D, Mirbagheri M. Optimization of culture media for enhancing gamma-linolenic acid production by Mucor hiemalis. Biological J Microorganism. 2016; 4(16): 25-31. 102. Nasr MM, Nahvi I, Keyhanfar M, Mirbagheri M. The effect of carbon and nitrogen sources on the fatty acids profile of Mortierella vinacea. Biological J Microorganism. 2017; 5(20): 1
|