تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,369 |
تعداد دریافت فایل اصل مقاله | 54,843,980 |
Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model | ||
Journal of Computer & Robotics | ||
مقاله 5، دوره 5، شماره 1، اردیبهشت 2012، صفحه 29-35 اصل مقاله (266.28 K) | ||
نویسندگان | ||
Leila Shahmohamadi* 1؛ Mahdi AliyariShoorehdeli2؛ Sharareh Talaie1 | ||
1Department of Electrical Engineering, Islamic Azad University, South Tehran Branch Tehran, Iran | ||
2Faculty of Electrical Engineering, K. N. Toosi University of Technology Tehran, Iran | ||
چکیده | ||
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the adaptive threshold band is made by a sliding window technique to make decision whether a fault occurred or not. In order to show the effectiveness of proposed FD method, it is used to identify a simulated single-shaft industrial gas turbine prototype model, which works in various operation points. This model is a reference simulation which is used in many similar researches with the aim of fault detection in gas turbines. | ||
کلیدواژهها | ||
Adaptive Threshold؛ LLNF Model؛ Multiple Model؛ Residual؛ Robust Fault Detection | ||
آمار تعداد مشاهده مقاله: 1,287 تعداد دریافت فایل اصل مقاله: 833 |