| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,591,004 |
| تعداد دریافت فایل اصل مقاله | 56,282,175 |
Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model | ||
| Journal of Computer & Robotics | ||
| مقاله 5، دوره 5، شماره 1، اردیبهشت 2012، صفحه 29-35 اصل مقاله (266.28 K) | ||
| نویسندگان | ||
| Leila Shahmohamadi* 1؛ Mahdi AliyariShoorehdeli2؛ Sharareh Talaie1 | ||
| 1Department of Electrical Engineering, Islamic Azad University, South Tehran Branch Tehran, Iran | ||
| 2Faculty of Electrical Engineering, K. N. Toosi University of Technology Tehran, Iran | ||
| چکیده | ||
| In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the adaptive threshold band is made by a sliding window technique to make decision whether a fault occurred or not. In order to show the effectiveness of proposed FD method, it is used to identify a simulated single-shaft industrial gas turbine prototype model, which works in various operation points. This model is a reference simulation which is used in many similar researches with the aim of fault detection in gas turbines. | ||
| کلیدواژهها | ||
| Adaptive Threshold؛ LLNF Model؛ Multiple Model؛ Residual؛ Robust Fault Detection | ||
|
آمار تعداد مشاهده مقاله: 1,291 تعداد دریافت فایل اصل مقاله: 845 |
||