- Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their
applications. J Nanomater. 2011; 2011: 1-25. 2. Su X, Zhao J, Bala H, Zhu Y, Gao Y, Ma S, Wang Z. Fast synthesis of stable cubic copper nanocages in the aqueous phase. J Phys Chem C. 2007; 111(40): 14689-14693. 3. Dadgostar N, Ferdous S, and Henneke D. Colloidal synthesis of copper nanoparticles in a two-phase liquid–liquid system. Mater Lett. 2010; 64(1): 45-48. 4. Lee HJ, Lee G, Jang NR, Yun JH, Song JY, Kim BS. Biological synthesis of copper nanoparticles using plant extract. Nanotechnol. 2011; 1: 371-374. 5. Raja M, Subha J, Ali FB, Ryu SH. Synthesis of copper nanoparticles by electroreduction process. Mater Manuf Process. 2008; 23(8): 782-785. 6. Yus H. Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Process Soc Jpn. 2001; 109(1269): 65-75. 7. Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys. 2009; 11(20): 3805-3821. 8. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001; 46(1): 1-184. 9. Lisiecki I, Filankembo A, Sack-Kongehl H, Weiss K, Pileni MP, Urban J. Structural investigations of copper nanorods by high-resolution TEM. Phys Rev B. 2000; 61(7): 4968. 10. Varshney R, Bhadauria S, Gaur MS. A review: biological synthesis of silver and copper nanoparticles. Nano Biomed Eng. 2012; 4(2): 99-106. 11. Pavani K.V, Srujana N, Preethi G, Swati T. Synthesis of copper nanoparticles by Aspergillus species. Lett Appl Nanobiosci. 2013; 2: 110-113.
12. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi C, Reddy BVS, Raju BDP. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostruct. 2011; 6(1): 181-186. 13. Rai, M, Maliszewska I, Ingle A, Gupta I, Yadav A. Diversity of microbes in synthesis of metal nanoparticles. In bio-nanoparticles: biosynthesis and sustainable biotechnology applications. Singh, O. V. (ed). Hoboken, NJ: John Wiley & Sons. 2015; pp. 1-30. 14. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010; 156(1): 1-13. 15. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin PG, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater. 2005; 17(21): 5255-5262. 16. Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R. Synthesis and characterization of copper nanoparticles. Mater Lett. 2007; 61(25): 4711-4714. 17. Shantkriti S, Rani P. Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci. 2014; 3: 374-383. 18. Washington JA. Dilution susceptibility test: Agar and macro-broth dilution procedures. American Soc for Microbiol. Washington, DC (USA); 1980. 19. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J. A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol. 2013; 97(2): 859-869. 20. aron inego . ai e an co ’s iagnos ic micro io og h e . he os Company, St. Louis, MO; 1990. 21. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's manual of determinative bacteriology, 9nd ed. Baltimore: Williams and Wilkins; 1994. 22. Collins CH, Patricia M, Lyne JM, Grange. Page 112 in Collins and dynes microbiological methods, 7th Ed. Butterworth-Heinemann, UK; 1995. 23. Weis urg W arns e e ier ane J. ri osoma amp ifica ion or phylogenetic study. J Bacteriol. 1991; 173: 697-703. 24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30: 2725-2729. 25. Tendencia EA. Disk Diffusion In: Laboratory manual of standardized methods for antimicrobial tests for bacteria isolated from aquatic animals and environment. Tigbavan, Ibilo; Aquaculture Dept, Southeast Asian Fisheries Development Centre. 2004; pp.13-29. 26. Hosseini MR, Schaffie M, Pazouki M, Darezereshki E, Ranjbar M. Biologically synthesized copper sulfide nanoparticles: production and characterization. Mater Sci Semicond Process. 2012; 15: 222-225. 27. Schaffie M, Hosseini MR. Biological process for synthesis of semiconductor copper sulfide nanoparticle from mine wastewaters. J Environ Chem Eng. 2014; 2(1): 386-391. 28. Yadav S, Bajpai PK. Synthesis of copper sulfide nanoparticles: pH dependent phase
stabilization. Nano-Structures Nano-Objects. 2017; 10: 151-158. 29. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F. Novel strain of Bacillus licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann Microbiol. 2012; 62(2): 553-558. 30. Dash H. R, Mangwani N, Chakraborty J, Kumari S, Das S. Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol. 2013; 97(2): 561-571. 31. Ghorbani HR, Mehr FP, Poor AK. Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Orient J Chem. 2015; 31: 527-529. 32. Salvadori MR, Lepre LF, Ando RA, Oller do Nascimento CA, Correa B. Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian amazon region. PLoS ONE. 2013; 8(11): e80519.
|