تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,800,516 |
تعداد دریافت فایل اصل مقاله | 54,843,316 |
ABS-Type Methods for Solving $m$ Linear Equations in $\frac{m}{k}$ Steps for $k=1,2,\cdots,m$ | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 2، دوره 7، 3 (SUMMER) - شماره پیاپی 27، آبان 2017، صفحه 185-207 اصل مقاله (369.28 K) | ||
نوع مقاله: Full Length Article | ||
نویسندگان | ||
Leila Asadbeigi1؛ Majid Amirfakhrian* 2 | ||
1Hamadan Branch, Islamic Azad University | ||
2IAUCTB | ||
چکیده | ||
The ABS methods, introduced by Abaffy, Broyden and Spedicato, are direct iteration methods for solving a linear system where the $i$-th iteration satisfies the first $i$ equations, therefore a system of $m$ equations is solved in at most $m$ steps. In this paper, we introduce a class of ABS-type methods for solving a full row rank linear equations, where the $i$-th iteration solves the first $3i$ equations. We also extended this method for $k$ steps. So, termination is achieved in at most $\left[\frac{m+(k-1)}{k}\right]$ steps. Morever in our new method in each iteration, we have the the general solution of each iteration. | ||
کلیدواژهها | ||
ABS methods؛ rank $k$ update؛ linear system؛ general solution of a system؛ general solution of an iteration | ||
آمار تعداد مشاهده مقاله: 273 تعداد دریافت فایل اصل مقاله: 121 |