| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,580,932 |
| تعداد دریافت فایل اصل مقاله | 56,277,093 |
A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation | ||
| International Journal of Mathematical Modelling & Computations | ||
| مقاله 1، دوره 8، 1 (WINTER) - شماره پیاپی 29، فروردین 2018، صفحه 1-14 اصل مقاله (328.5 K) | ||
| نوع مقاله: Review Article | ||
| نویسنده | ||
| elham afshari* | ||
| Islamic Azad University,khomain Branch | ||
| چکیده | ||
| In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in the Caputo sense. We propose a new finite difference method for solving time fractional diffu- sion equation. In our method firstly, we transform the Caputo derivative into Riemann-Liovill derivative. The stability and convergence of this method are investigated by a Fourier analysis. We show that this method is uncondition- ally stable and convergent with the convergence order O( 2+h2), where t and h are time and space steps respectively. Finally, a numerical example is given that confirms our theoretical analysis and the behavior of error is examined to verify the order of convergence. | ||
| کلیدواژهها | ||
| fractional derivative؛ finite difference method؛ Stability and convergence؛ Fourier analysis؛ time fractional diffusion equation | ||
|
آمار تعداد مشاهده مقاله: 289 تعداد دریافت فایل اصل مقاله: 206 |
||