تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,362 |
تعداد دریافت فایل اصل مقاله | 54,843,972 |
A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 1، دوره 8، 1 (WINTER) - شماره پیاپی 29، فروردین 2018، صفحه 1-14 اصل مقاله (328.5 K) | ||
نوع مقاله: Review Article | ||
نویسنده | ||
elham afshari* | ||
Islamic Azad University,khomain Branch | ||
چکیده | ||
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in the Caputo sense. We propose a new finite difference method for solving time fractional diffu- sion equation. In our method firstly, we transform the Caputo derivative into Riemann-Liovill derivative. The stability and convergence of this method are investigated by a Fourier analysis. We show that this method is uncondition- ally stable and convergent with the convergence order O( 2+h2), where t and h are time and space steps respectively. Finally, a numerical example is given that confirms our theoretical analysis and the behavior of error is examined to verify the order of convergence. | ||
کلیدواژهها | ||
fractional derivative؛ finite difference method؛ Stability and convergence؛ Fourier analysis؛ time fractional diffusion equation | ||
آمار تعداد مشاهده مقاله: 282 تعداد دریافت فایل اصل مقاله: 188 |