تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,243 |
تعداد دریافت فایل اصل مقاله | 54,843,894 |
An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 3، دوره 8، 1 (WINTER) - شماره پیاپی 29، فروردین 2018، صفحه 29-38 اصل مقاله (530.88 K) | ||
نوع مقاله: Review Article | ||
نویسندگان | ||
Driss Sbibih* 1؛ Bachir Belkhatir2 | ||
1Department of Mathematics, Faculty of Sciences, University Mohammed First | ||
2LANO Laboratory, University Mohammed First, Oujda, Morocco | ||
چکیده | ||
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters within a rational cubic Bézier curve should be determined by minimizing a maximum error. We finish by proving and justifying the efficiently of the approaching method with some comparative numerical and graphical examples. | ||
کلیدواژهها | ||
Hermite interpolation؛ Rational curve؛ G^2 continuity؛ Geometric conditions؛ Optimization | ||
آمار تعداد مشاهده مقاله: 331 تعداد دریافت فایل اصل مقاله: 206 |