
International Journal of

Mathematical Modelling & Computations

Vol. 08, No. 01, Winter 2018, 39- 51

Stability Analysis and Optimal Control of Vaccination and

Treatment of a SIR Epidemiological Deterministic Model with

Relapse

O. M. Ogunmiloroa, S. E. Fadugbab,∗ and T. O. Ogunladec

a,b,cDepartment of Mathematics, Ekiti State University, Ado Ekiti, P.M.B 5363, Nigeria.

Abstract. In this paper, we studied and formulated the relapsed SIR model of a constant size
population with standard incidence rate. Also, the optimal control problem with treatment
and vaccination as controls, subject to the model is formulated. The analysis carried out on
the model, clearly showed that the infection free steady state is globally asymptotically stable
if the basic reproduction number is less than unity, and the endemic steady state, also, is
globally asymptotically stable if the basic reproduction number (R0) is greater than unity.
The results obtained from the simulations were analyzed and discussed.
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1. Introduction

In some infectious diseases, the relapse phenomenon occurs when a previously in-
fected host becomes infected again due to subsequent relapse or reactivation of the
disease. Some diseases like bovine tuberculosis, human herpes virus, malaria, e.t.c.,
can be modeled in a similar manner like the model considered in this paper due
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to the disease’s ability to reactivate itself by making their host become infectious
again. If adequate and timely interventions like vaccination, treatment, educational
enlightenment, campaign e.t.c., are put in place within the host community, then,
such diseases with high endemicity would be eradicated.
Mathematical epidemiological models have been employed as an important tool

to analyze the control and the spread of diseases. Reproduction number, (R0),
being a key factor in epidemiological studies, have been studied by several authors,
in which [2, 5, 6, 11, 13, 14] have proved very useful in this study. One of the first
epidemic models with relapse was studied and formulated by [3] in which the relapse
factor was incorporated into the model. Later, [10] formulated a model in a constant
population with latency and relapse. Also the work of [1, 4, 19, 20, 21, 22, 23, 24] have
proved very useful in studying both the local and global properties of general SIR
and SIRS epidemic models with non - linear transmission rate.
Optimal control theory have been another important aspect of mathematics em-

ployed to control the spread of disease and a decision tool involving epidemiolog-
ical situations when control measures such as treatment, vaccine, e.t.c are avail-
able. [7] used optimal control theory to determine the condition of the elimina-
tion of tumor cells in an individual under treatment for cancer. The literature of
[9, 12, 8, 9, 16, 17, 18] have been useful in the application of optimal control process
to mathematical epidemiological models.
In this paper, we worked on how the two controls, vaccination (µ1) and treatment

(µ2) strategies can be combined optimally, so that the cost of implementing it
would be reduced and at the same time the disease would be eradicated within a
period of time. Our work slightly differs from the other cited literatures, because we
considered and studied the stability conditions of the SIR model which incorporates
relapse with standard incidence rate and a constant population size. While, the
objective functional reduces the numbers of infective at the control period to a
level in which the disease would be eradicated and die out.
The rest of the paper is organized as follows. In section 2, the model is formulated

and analyzed. Section 3 presents the basic reproduction number being studied
and obtained. Also, in section 4, the two equilibria at disease free and endemic
is obtained, while the local and global stability analysis is investigated at the
equilibria. Section 5, the optimal control is characterized and the optimality of the
systems are derived using the Pontryagin maximum principle. Also, the numerical
simulations were performed, and the results obtained is concluded analytically.

2. Mathematical model formulation

In this paper, the compartmental models are subdivided into disjointed mutually
exclusive classes. The total host population breaks the total host population into
different subgroups that are the susceptible class S, Infectious class I and individ-
uals that are infected but recovered or removed R. In the SIR model, the relapse
parameter σ is incorporated into the model thereby making the recovered individ-
ual to be susceptible to the disease by the reactivation of the disease. The model
is presented as follows

Ṡ = µN − βSI

N
− µS − u1S + σR,

İ =
βSI

N
− µI − u2I + αR,

Ṙ = u2I − (µ+ α+ σ)R, (1)
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subject to initial conditions S(t) > 0, I(t) > 0, R(t) ⩾ 0.
In (1), all the parameters in the model are all positive constants. The parameter

µN , is the recruitment rate of the susceptible class. While, µ is the natural death
rate of the population , β is the disease transmission rate, u1 is the proportion
of the susceptible that are vaccinated per unit time, u2 is the proportion of the
infectives that is treated per unit time, α is the disease induced death rate.
The total population,

N = S + I +R (2)

where,

R = N − S − I (3)

substituting (3) into (1) gives,

Ṡ = µN − βSI

N
− µS − u1S + σ(N − S − I)

İ =
βSI

N
− µI − u2I + α(N − S − I) (4)

Non - dimensionalising (4), let Ṡ = s
N and İ = i

N

ṠN = µN − βsiN − µSN − u1SN + σ(N − sN − iN)

İN = βsiN − µiN − u2iN + α(N − sN − iN) (5)

dividing (5) through by N , and solving further yeilds,

Ṡ = µ− βsi− (µ+ u1)s+ σ(1− s− i)

İ = βsi− µI − u2I + α(1− s− i) (6)

2.1 Analysis of the model

To obtain the invariant region of (1), we differentiate both sides of (2) to obtain

dN

dt
=

dS

dt
+

dI

dt
+

dR

dt
(7)

also, adding up (1) becomes,

Ṅ = µN(t)− µ (8)

integrating both sides of (8) becomes;∫
dN

dt
=

∫
µN(t)− µ (9)

such that,

−1

µ
ln(µ− µN) ⩽ t+ c (10)
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becomes,

N =
N

µ
+ Ce−µt (11)

where C is a constant. Therefore,

limt−→0

(N
µ

+
C

eµt

)
=

N

µ
(12)

this implies that,

S ⩽ N

µ
+

C

eµt
, I ⩽ N

µ
+

C

eµt
, R ⩽ N

µ
+

C

eµt
(13)

since all the sum is equal to N , therefore the upper bound of (1) is N
µ + C

eµt , and

the lower bound is 0. It clearly shows that, all the solutions of, S(t), I(t), R(t) of
(1) are bounded. Therefore,

ξ =
[
x = (S, I,N) ∈ ℜ+3|S ⩾ 0, I ⩾ 0, S + I ⩽ N ⩽ N

µ

]
(14)

is positively invariant.
Hence, for the initial starting point x ∈ ℜ+3, the trajectory remains in ξ which
makes the model system (1) to be epidemiologically realistic and mathematically
well posed.

3. Reproduction number (R0)

In (1), µN is the recruitment rate and µ is the per capita natural death rate, which
are assumed to be constant. According to Castillo - Chavez and Zilhan Feng [23]
that, let,

X = (S,R), Z = I, U0 =
(N
µ
, 0, 0

)
(15)

also,

µN = β − (µ+ u2 + α) (16)

where M = β and D = (µ + u2 + α). β is the average number of susceptible
individuals infected by one infectious individual per unit time and 1

µ+u2+α is the
mean length of infectious period. Then,

R0 = MD−1 =
β

µ+ u2 + α
(17)

R0 is the number of secondary infectious individual introduced into the population
of susceptible during individual’s infection per unit time.
if R0 > 1, an outbreak of the disease occurs. If R0 < 1, then the disease will be
eradicated.
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4. Existence of the steady states

The existence of the steady state solutions of the model is investigated to know
what will likely happen to the disease in a short or long term in the host population
if, the disease would be eradicated or it will persist and become endemic.

4.1 Disease free equilibrium

Assuming that there is no infection in the system (4), i.e.(i = 0), setting,

S = µ− βsi− (µ+ u1)s+ σ(1− s− i) = 0 (18)

and,

I = βsi− (µ+ u2)i+ α(1− s− i) = 0 (19)

becomes,

α(1− s) = 0 (20)

if α ̸= 0, s = 1 , then, the equilibrium points, (s, i) = (1, 0) is the disease free
equilibrium.

4.2 Local stability analysis of the disease free equilibrium

To check for the local stability of the disease free equilibrium of the model, we
obtained the jacobian variational matrix of the systems of the given equations.
Let,

f1 = µ− βsi− (µ+ u1)s+ σ(1− s− i)

f2 = βsi− (µ+ u2)s+ α(1− s− i) (21)

so that,

J |(s, i)− λ| =
(∂f1

∂s
∂f1
∂i

∂f2
∂s

∂f2
∂i

)
(22)

at disease free equilibrium points becomes,(
−βi− (µ+ u1)− λ −βs− σ

βi− α βs− (µ+ u2)− α− λ

)
(23)

solving the determinant in (18) gives,

λ2 + λ[(µ+ u1 + σ − β + (µ+ u2 + α)]− (µ+ u1 + σ)(β − (µ+ u2 + α)] (24)

if,

β > (µ+ u2 + α) ⇔ [β(µ+ u2 + α)] > 0 (25)
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also,

β

µ+ u2 + α
>

µ+ u2 + α

µ+ u2 + α
=

( β

µ+ u2 + α
− 1

)
> 0 (26)

where (R0 − 1) > 0 implies that R0 < 1, shows that the disease free equilibrium
points of the model (6) is locally asymptotically stable.

4.3 Global stability of the disease free equilibrium

To prove the global stability of the disease free equilibrium points in ξ for R0 ⩽ 1,
we define a Lyapunov function that if, V : ξ −→ R then, V (s, i) = i

V (s, i) =
di

dt
= [(βs− (µ+ u2)− α)i+ α(1− s)] (27)

implies that,

V̇ (s, i) = (µ+ u2 + α)
(
R0s−

1

µ+ u2 + α

)
i ⩽ 0 ⇒ R0 ⩽ 1 (28)

so that,

V̇ (s, i) = (µ+ u2 + α)
(
R0s−

1

µ+ u2 + α

)
i ⩽ 0 ⇒ R0 ⩽ 1 (29)

then, it clearly shows that for R0 > 1, V̇ = 0 implies that i = 0. also, if R0 = 1,
V̇ = 0 implies that s = 1. From the La - Salle Lyapunov theorem [6] that, if s = 1
and i = 0, then, di

dt = 0, so that the only positively invariant subset of the i = 0, is
the disease free equilibrium point, which is globally stable in the interior of ξ for
R0 ⩽ 1

4.4 Endemic equilibrium

Assuming that the infection persists in the system (4), such that

(s∗, i∗) = (i ̸= 0) (30)

, then, the equilibrium points

(s∗, i∗) =
( µ+ σ(1− i)

βi+ µ− σ + u1
,− α(−1 + s∗)

βs∗ − (µ+ u2) + α

)
(31)

is the endemic equilibrium point.

4.5 Local stability of the endemic equilibrium

To obtain the local stability of the endemic equilibrium points, we set the right
hand side of (6) to zero such that,

f1 = µ− βsi− (µ+ ui)s+ σ(1− s− i)

f2 = βsi− (µ+ u2)i+ α(1− s− i) (32)
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and the Jacobian of the variational matrix is obtained from (28) as,

J |(s, i)− λ| =
(∂f1

∂s
∂f1
∂i

∂f2
∂s

∂f2
∂i

)
(33)

where (33) becomes,

|J − λI| =
(
−βi∗ − (µ+ u1)− λ −βs∗ − σ

βi∗ − α βs∗ − (µ+ u2)− α− λ

)
(34)

The characteristics polynomial of the variational matrix (34) at the endemic equi-
librium points, E∗(s∗, i∗) is,

λ2 + a1λ+ a2 (35)

where,

a1 = (2µ+ α+ u1 + u2) (36)

and,

a2 = βs∗(µ+ α+ λ+ u1) + βi∗(µ+ α+ σ + λ+ u2) + (α+ u1 + u2)µ

+(σ + u1)α+ u1u2. (37)

The Routh - Hurwitz criteria states that the variational matrix have negative real
parts if and only if a1 > 0 and a2 > 0. Also, the trace of (34) is given as,

−2µ− u1 − u2 + σ − α+
βα(−1 + s∗)

βs∗ − µ− u2 + α
− β[µ+ σ(−1 + i∗)]

βs∗ + µ− σ + u1
(38)

such that,

−2µ− u1 + (R0 − 1) (39)

which clearly shows that the trace is negative provided that R0 > 1. Also, the
determinant of (34) is given as,

(βi∗ − α)(βs∗ − σ)− [βi∗ − (µ+ u1)][R0 − 1] (40)

implies that the determinant of the matrix is positive provided that R0 > 1. Thus,
the endemic equilibrium E∗ = (s∗, i∗) is locally asymptotically stable.

4.6 Global stability of the endemic equilibrium

The global stability of the endemic equilibrium of (31)is solved via the direct
method of Lyapunov and La - Salle invariance principle. We consider the non
linear Lyapunov functions.

V : ξ+ −→ R, ξ+ = [(s, i, n) ∈ ξ+, s > 0, i > 0, n > 0] (41)
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such that,

V (s, i, n) =
(n− n∗)2

2
+

(s− s∗)2

2
+

ϵ

ki

[
i− i∗ − i∗ln

(
ln

i

i∗
)
]

(42)

differentiating (42) to obtain,

V̇ (s, i, n) = (n− n∗)ṅ+ (s− s∗)ṡ+
ϵ

kl

(
1− i∗

i

)
i (43)

so that,

V̇ = (n− n∗)(µn∗ − µ− uis
∗) + (s− s∗)(µn− βsi− (µ+ u1)s+ σ(1− s− i)+

ϵ

ki

(
i− i∗2

i
)(βsi− (µ+ u1)i+ α(1− s− i)

(44)

from (6),

un = βs∗i∗ − (µ+ u1)s
∗ + σ(1− s∗ − i∗) = µn∗ − µ− u1s

∗ (45)

and,

βs∗i∗ = (µ+ u2)i
∗ + α(1− s∗ − i∗) = βs∗i∗ − (µ+ u1)s

∗ + σ(1− s∗ − i∗) (46)

so that,

V̇ = (n− n∗)(µn∗ − µ− u1s
∗) + (s− s∗)(µn− βsi− (µ+ u1)s

∗ + σ(1− s− i)

+
ϵ

kl

(
i− i∗2

i

)
(βsi− (µ+ u1)i+ α(1− s− i)).

(47)

also,

V̇ = (n− n∗)(µn∗ − µ− u1s
∗ − µ− u1s

∗ − µ− u1s
∗) + (s− s∗)(βs∗i∗ − (µ+ u1)s

∗

+σ(1− s∗ − i∗))− βsi− (µ+ u1)s+ σ(1− s− i) +
ϵ

k
(i− i∗)(βsi− βs∗i)

(48)

so that,

V̇ = µ(n− n∗)2 + u1(n− n∗)(i− i∗)− (µ+ u1)(s− s∗)2 + β(s− s∗)(s∗i∗ − si)

+σ(s− s∗)(i− i∗) +
βϵ

k
(i− i∗)(s− s∗)

(49)

Hence, V̇ = 0 if and only if s = s∗ = ϵ
k , i = i∗ = 0 and n = n∗, by the La - Salle’s

invariant principle [6], the largest compact invariant set in (s, i) ∈ ξ : V̇ = 0 is the
singleton (E∗). (E∗) is the endemic equilibrium. Thus, the endemic equilibrium is
globally asymptotically stable in the region ξ.
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5. Optimal control problem

In this section, we propose and analyze an optimal control problem applied to the
disease model dynamics governed by (6). We included a control function u(∗) to
the model which represents the fraction of infected individual i that are subjected
to treatment and vaccination until recovery. It is however expected that the control
takes value in the closed set [0, 1], where u = 0 means, no control measure and u = 1
means that all infected individual are subjected to vaccination and treatment. We
define the objective functional as,

Z = minu1u2
i(T ) +

1

2

∫ T

0
(W1u

2
1 +W2u

2
2)dt (50)

subject to the system (6) with states initial conditions. Also, the control set Ω is
Lebesgue measurable and thus defined as,

Ω =
[
(u1(t), u2(t))|0 ⩽ u1 ⩽ u1max ⩽ 1, 0 ⩽ u2 ⩽ u2max ⩽ 1, t ∈ [0, T ]

]
(51)

Also, W1 and W2 are the relative weights attached to the cost of treatment and
vaccination. u1 is the control function for the proportion of susceptible individuals
subjected to vaccination per unit time and u2 is the control function for the pro-
portion of infected individuals subjected to treatment per unit time. Where u1 and
u2 takes value between 0 and 1. In addition, u1max and u2max respectively depend
on the available resources to implement each of the control measures. Furthermore,
W1u

2
1 and W2u

2
2 denote the cost associated with vaccination and treatment which

includes, vaccine cost, vaccine storage cost, drug cost, medical test and diagno-
sis costs e.t.c. The cost take a non - linear form, and i(t) is the terminal cost
which the goal is to minimize the proportion of the infective individual after the
implementation of the control program.

5.1 Characterization of the optimal control pairs

The control pairs (u∗1, u
∗
2) will be characterized to accomplish the set objectives

and the states (s∗, i∗). According to the Pontryagin maximum principle [9] with a
fixed final time (T ). Then, there exists a non trivial absolute continuous mapping:

λ : [0, T ] → R+2, λ(t) = [λ1(t), λ2(t)] (52)

is called the adjoint vector, such that, the control system,

s
′
=

∂H

∂λ1
, i

′
=

∂H

∂λ2
(53)

the adjoint system,

λ
′
=

∂H

∂s
, λ

′

2 = −∂H

∂i
(54)

is subject to the transversality condition

λ1(T ) = 0, λ2(T ) = 1 (55)
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then, the optimal control pairs (u∗1, u
∗
2) is thus given as,

u∗1 = min
[
max

(
0,

λ1S

W1

)
, u1max

]
, u∗2 = min

[
max

(
0,

λ2S

W2

)
, u2max

]
(56)

and

H =
1

2
W1u

2
1 +W2u

2
2 + λ1(µ− βsi− (µ+ u1)s+ σ(1− s− i) + λ2(βsi− (µ+ u2)i

+α(1− s− i)
(57)

is called the Hamiltonian.
we now proceed to differentiate H with respect to u1 and u2 by employing the Pon-
tryagin maximum principle [9], where the Hamiltonian is maximized with respect
to the optimal control pairs, Then,

∂H

∂u1
= W1u1 − λ1s = 0 (58)

and

∂H

∂u2
= W2u2 − λ2i = 0 (59)

also, by substituting u1 = u∗1 and u2 = u∗2 and solving for the optimal control pairs
we obtain,

u∗1 =
λ1s

W1
, u∗2 =

λ2i

W2
(60)

which in turn gives the optimality of the system as

Ṡ = µ− βsi− (µ+ u1)s+ σ(1− s− i) = 0,

İ = βsi− (µ+ u2)i+ α(1− s− i) = 0, (61)

subject to

S(0) = S0, I(0) = I0, (62)

λ̇1 = λ1(βi+ µ+ u∗1 + σ)− λ2i,

λ̇2 = λ1(βs− λ2i(βs− u∗2 − d− α), (63)

subject to

λ1(T ) = 0, λ2(T ) = 0. (64)
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6. Numerical simulations and discussion of results

Numerical solutions of the proposed model (6) was obtained using Maple ODE
solver with different initial starts and parameters in the models as follows;
µ = 0.01, β = 0.5, σ = 0.02, α = 0.03, it is however pertinent to note that the
parameters were incorporated into the model so that the population N(t) will not
go extinct. The results obtained were displayed in the Figures 1, 2, 3, 4 and 5
below.

Figure 1. Plot of S(t) against time (t)(days).

Figure 2. Plot of I(t) against time (t)(days).

Figure 3. Plot of the phase portrait of s(t) against i(t).

6.1 Discussion of results

Figure 1 shows the class of susceptible individuals. It is observed from Figure 1
that Without any control measure in place in which, within a short period of time,
there would be a large and quick inflow from the susceptible to the infected class.
Therefore control measures should be put in place to reduce contact between the
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Figure 4. Plot of the population of N(t) for W1 and W2 against time(days).

Figure 5. Plot of marginal cost λ1, λ2 for W1 and W2 against time(days).

susceptible and the infected class. Figure 2 depicts that there is a sharp increase
in the level of infectiousness if infective individuals continue to infect people in the
host population, and without control measures, the persists and can lead to death
in the host population. Figure 3 is the phase portrait showing the movement of the
susceptible with the infected class. Due to the incidence rate, the flow of individuals
out of the susceptible class is directly proportional to the rate at which people are
infected with the disease. The trajectories of the two solutions of s(t) and i(t) are
stable and non periodic. Figure 4 shows the profile of the control functions u1 and
u2 with weights W1 and W2 respectively. If the treatment control is applied, it does
not really have much effect in bringing down the numbers of infected individuals
which peak less than the former. But, if the two controls have the same weight,
there might not be a significant difference. Figure 5 clearly shows that after the
intersection between the two costs, λ1 and λ2 for W1 and W2. The marginal cost of
treatment peaks higher with time. While, the marginal cost vaccination begins to
drop with time, Because, it is more economical to expand the treatment coverage
unless it is otherwise unavoidable.

7. Conclusion

In this paper, a deterministic SIR model with standard incidence rate, incorporat-
ing relapse and several other parameters is proposed and studied. The SIR model
considered in this paper slightly differs from the general SIR and SEIR model
worked upon qualitatively and quantitatively, thereby showing that the model is
positive, epidemiologically realistic and mathematically non trivial. The steady
states at infection free and present is obtained and their local and global stability
conditions is investigated. However, the basic reproduction number R0 shows that
if R0 < 1, the disease will be eradicated and if R0 > 1, then , the disease lingers
on. The optimal analysis is investigated to show how the optimal combination of
treatment and vaccination strategies will completely eradicate the disease with cure
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and vaccine within a specified period of time. The Pontryagin maximum principle
[9] is employed to characterize the two controls and derive the system optimally.
Furthermore, the numerical simulation of the disease profile to the susceptible and
infectious class is plotted, firstly, in the absence of control and later on, optimally
in the presence of controls u1 and u2 to show it is more expensive to treat than to
vaccinate in order to put the disease below a certain threshold. Finally, this work
can be modeled and extended upon in a similar manner for diseases like malaria,
typhoid, tuberculosis, e.t.c. Also, the results obtained from this work can contribute
to, and be improved upon when problems arises in epidemiological studies.
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