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As we know, in evaluating of DMUs some of them might be efficient, so ranking of them 

have a high significant. One of the ranking methods is cross-efficiency. Cross efficiency 

evaluation in data envelopment analysis (DEA) is a commonly used skill for ranking 

decision making units (DMUs). Since, many studies ignore the intra-organizational 

communication and consider DMUs as a black box. For significant of this subject, we 

applied cross-efficiency for network DMUs. However, In view of the fact that precise 

input and output data may not always be available in real world due to the existence of 

uncertainty, we have developed the model with interval data. the existing classical 

interval DEA method is not able to rank the DMUs, but can only classify them as 

efficient or inefficient , so this paper improve that. The proposed method can be used for 

each network that includes DMUs with two stages in production process. However, this 

paper is the first study that examined cross efficiency of DMUs in structure framework 

with interval data. the new approach  enables us to ranking of first stage for n DMU and 

second stages of them. DMUs with the best rank can be used as benchmark for improving 

efficiency of other DMUs. Finally, We present Illustrate example with two steps for 

proposed model that can be develop for more than two steps. 
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Introduction 

Data envelopment analysis (DEA) is a 

linear and non-parametric programming 

technique for measuring the relative 

efficiency of decision making units 

(DMUs) with multiple inputs and multiple 

outputs[31]. The efficiency score of a 

DMU is describe as the maximum of the 

ratio of its weighted sum of outputs to its 

weighted sum of inputs and it  cannot be 

greater than 1 any DMU. A DMU is 

efficient if its efficiency score is equal to 

1, otherwise it is inefficient. Usually, 

efficient DMUs are  assessed to perform 

better than inefficient DMUs Since its 

 institution [32], various DEA models 

were  suggested by other scholars. One of 

the most popular models is the cross-

efficiency method,  found by Sexton et al. 

(1986). It was developed as a DEA 

extension, and could be used to rank 

efficient DMUs by using cross-efficiency 

scores which were related to all DMUs. 

When cross-efficiency method is used, 

optimal weights computed by the DEA 

model are generally not unique, making 

cross-efficiency scores generated 

arbitrarily [23]. This set of weights 

may possibly develop some DMUs’ ranks, 

while worsen those of the others, which 

might reduce the usefulness of cross-

efficiency. To overcome this problem, 

Doyle & Green (1994) proposed two 

different types of models: aggressive and 

benevolent formulations, which represent 

two diametrically across from strategies. 

The idea of the aggressive or benevolent 

model is to recognize optimal weights that 

can not only maximize the 

efficiency of the DMU under evaluation 

but also maximize or minimize the average 

efficiency of other DMUs[11]. Liang et al. 

(2008) suggested a series of secondary 

objective functions to extend Doyle and 

Green’s models. Each secondary objective 

function represents a kind of efficiency 

evaluation criterion, according to which 

the efficiency scores are compared from 

multiple different angles[29]. Wang & 

Chin (2010) proposed a neutral DEA 

model for cross- efficiency evaluation. 

They  belief that in evaluation of the DMU 

should  cover whether the weights could 

be as favorable as possible to itself, rather 

than how aggressive or benevolent the 

weights are to the others [6]. However, 

neither the traditional DEA model nor the 

cross-efficiency methods can directly 

handle interval data. Some theoretical 

research of DEA with interval data has 

been presented in the literature, for 

instance, Despotis & Smirlis (2002) and 

Jahanshahloo et al. (2004) suggested some 

new models in earlier research. These 

models can only classify the DMUs, but 

fail to rank them. In this study, A new 

approach is developed to address the issue 

of ranking all the DMUs. 

The new approach, cross-efficiency 

method applied for two stages DMUs with 

interval data. So, 1)we consider lower 

bound in first stage of whole DMUs , 

Forming Crossover n*n table and then 

Compute the average elements of each row 

for DMU and then calculate distance of it 

from one , also, 2)we consider upper 

bound in first stage of whole DMUs , 

Forming Crossover n*n table and then 

Compute the average elements of each row 

for DMU and then calculate distance of it 

from one. Now, Calculate the average of 

two above numbers. The smaller average 

have a better rank, so rank the first stage of 

DMUs. Similarly as above, we rank the 

second stage of DMUs. 

The rest of the paper is organized as 

follows. Section 2introduces the literature 

review of interval DEA models and cross 

efficiency. Section 3presents the new 

model for the cross-efficiency evaluation 

method with interval data for tow stage 

DMUs. Illustrative example for proposed 

method are presented in section 4. 

Conclusions and further remarks are given 

in Section 5. 
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Material and methods 

Data envelopment analysis (DEA), 

originally proposed by Charnes, Cooper, 

and Rhodes (1978), is a non-parametric 

programming method for evaluating the 

efficiency of a group of homogenous 

decision making units (DMUs) with 

multiple inputs and multiple outputs [1, 2, 

3, 4, 5] The main idea of DEA is to 

generate a set of optimal weights for each 

DMU in a set of DMUs to maximize the 

ratio of its sum of weighted outputs to its 

sum of weighted inputs while keeping all 

the DMU ratios at most 1. This maximum 

ratio is defined as the efficiency of the 

DMU under evaluation [6, 7].For its 

effectiveness in identifying the best-

practice frontier and ranking the DMUs, 

DEA has been widely applied in 

benchmarking and efficiency evaluation of 

schools [8], hospitals [9], bank branches 

[10],and so on. However, the traditional 

self-evaluated DEA models with total 

weight flexibility may evaluate many 

DMUs as DEA efficient and cannot make 

any further distinction among these 

efficient DMUs. Therefore, one of the 

main shortfalls of the traditional DEA 

model (CCR or BCC model) is its inability 

to discriminate among DMUs that are all 

deemed efficient [6]. 

To improve the power of DEA in 

discriminating the efficient DMUs, 

Sexton, Silk man, and Hogan (1986) 

incorporated the concept of peer 

evaluation into DEA, and proposed the 

cross-efficiency evaluation method. In 

cross-efficiency evaluation, each DMU 

gets a self-evaluated efficiency obtained 

by its own most favorable weights and n-1 

peer-evaluated efficiencies obtained using 

the other DMUs’ most favorable weights. 

Then, all these efficiencies are aggregated 

into a final efficiency for the DMU under 

evaluation. There are at least three 

principal advantages of the cross-

efficiency evaluation. Firstly, it almost 

always ranks the DMUs in a unique order 

[11].Secondly, it eliminates unrealistic 

weight schemes without incorporating 

weight restrictions [12]. Finally, it 

effectively distinguishes good and poor 

performers among the DMUs[13].Due to 

these advantages, cross-efficiency 

evaluation has been extensively applied in 

performance evaluation of nursing homes 

[14], preference ranking and project 

selection [15], selection of flexible 

manufacturing systems [16], judging 

suitable computer numerical control 

machines [17 , determining the efficient 

operators and measuring the labor 

assignment in cellular manufacturing 

systems [18], performance ranking of 

countries in the Olympic Games [19], 

supplier selection in public procurement 

[20], portfolio selection in the Korean 

stock market [21], energy efficiency 

evaluation for airlines [22], and so on. 

In spite of its advantages and wide 

applications, there are still some 

shortcomings in DEA cross-efficiency 

evaluation. For example, the non-

uniqueness of the DEA optimal weights 

may reduce the usefulness of cross-

efficiency evaluation[14]. Specifically, the 

optimal weights generated from the 

traditional models (CCR or BCC model) 

are generally not unique. Thus, the cross-

efficiency scores for the DMUs are 

somewhat arbitrarily generated [23]. To 

solve this problem, Sexton, Silk man, and 

Hogan (1986) suggested incorporating 

secondary goals into cross-efficiency 

evaluation. Based on this idea, many 

secondary goal models have been 

proposed [14]. For example, Jahanshahloo, 

Hosseinzadeh Lofti, Yafari, and Maddahi 

(2011) used selecting symmetric weights 

asa secondary goal in cross-efficiency 

evaluation [24]. Wu, Sun, Zha, and Liang 

(2011) and Contreras (2012) proposed 

weights selecting models in which the 

secondary goal is to optimize the ranking 

position of the DMU under evaluation[25, 

26]. Lim (2012) proposed models using 

the minimization (or maximization) of the 
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best (or worst) cross efficiencies of peer 

DMUs as the secondary goal [27]. 

Maddahi, Jahanshahloo, Hosseinzadeh 

Lotfi, and Ebrahimnejad (2014) suggested 

optimizing proportional weights as a 

secondary goal in DEA cross-efficiency 

evaluation[28]. Among the secondary goal 

models, the most commonly used are the 

benevolent and aggressive models [11] 

The main idea of the 

benevolent(aggressive) model is to select 

for each DMU a set of optimal weights 

that makes the other DMUs’ cross 

efficiencies as large (small) as possible 

while keeping its own efficiency at its 

predetermined optimal level (CCR 

efficiency). Liang, Wu, Cook, and Zhu 

(2008) extended the model of Doyle and 

Green (1994) by introducing various 

secondary objective functions. Each new 

secondary objective function represents an 

efficiency evaluation criterion and can be 

applied in different practical case scenarios 

[29]. They also proposed alternative 

secondary goal models, but they replaced 

the target efficiency of each DMU from 

the ideal point 1 to CCR efficiency. 

 Another main drawback of cross-

efficiency evaluation is that the generated 

average cross-efficiency scores for the 

DMUs are not Pareto optimal [25], which 

means it may be difficult to get all the 

DMUs to accept these cross-efficiency 

evaluation results. To overcome this 

drawback, some scholars have eliminated 

the average assumption for determining 

the ultimate cross-efficiency scores by 

using a common weights evaluation 

method. For example, Wu, Liang, and 

Yang (2009) considered the DMUs as 

players in a cooperative game, in which 

the characteristic function values of 

coalitions are defined to compute the 

Shapley value of each DMU, and the 

common weights associated with the 

imputation of the Shapley values are used 

to determine the ultimate cross-efficiencies 

scores [30].  

 

Interval DEA Models 

Assume there are n DMUs with two stages 

to be evaluated. Each DMU produces s 

outputs using min puts. Input i and output r 

for DMUj are denoted as ijx
 and rjy

 , 

respectively. The input and output data ijx
 

and rjy
are not assumed to be exactly 

obtained because of uncertainty. Only their 

bounded interval
[ , ]l u

ij ijx x
 and

[ , ]l u

rj rjy y
with

0l

ijx 
and

0l

rjy 
, are known. In order to 

measure the efficiencies of the DMUs with 

uncertain inputs and outputs data, Despotis 

& Smirlis (2002) proposed a pair of linear 

problem models to generate the lower and 

upper bounds of the efficiency for each 

DMU. However, Wang & Yang (2005) 

pointed out that the efficiencies calculated 

by the models in Despotis & Smirlis 

(2002) are lack of the comparability. 

Because different production frontiers 

have been adopted in the process of 

efficiency measurement. In order to deal 

with such an uncertain situation, the CCR-

DEA model can be defined as: 
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In order to calculate the lower and upper 

bound of the efficiency of DMUd , Wang 

et al.(2005) proposed the following two 

linear formulations to generate the 

bounded interval
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In the above two models, DMUd is the 

DMU under evaluation, idw
and rd

are the weights assigned to the inputs 

and outputs respectively.
l

ddE
is the lower 

efficiency for DMUd,
u

ddE
is the upper 

efficiency.  is the non-Archimedean 

infinitesimal. Considering model (3) and 

(4), it is clear that
l u

dd ddE E
DMUd , can be 

considered as DEA efficient if its best 

possible upper efficiency
* 1u

ddE 
, or it is 

inefficient if
* 1u

ddE 
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Cross-efficiency Evaluation Method with 

Interval Data 

In fact, the DMU under evaluation heavily 

weighs the inputs and outputs of a few 

favorable DMUs and ignores those of the 

others in order to maximize its own 

efficiency ratio. Moreover, optimal 

weights calculated with the models (2)and 

(3) are generally not unique. The different 

calculation software may produce different 

optimal weights, making the generated 

cross-efficiency scores arbitrary. 

Therefore, an interval cross-efficiency 

evaluation method is used to overcome 

this shortcoming. The cross-efficiency 

method in DEA uses peer evaluation 

instead of self-evaluation. It can define the 

cross-efficiency scores of DMUs on their 

interval (Wang & Yang 2005). 

In the traditional cross-efficiency method, 

some choice of weights may lead to a 

lower cross-efficiency for some DMUs or 

a higher cross-efficiency for the others. So 

we introduce a secondary objective 

function to reduce the ambiguity. Model 

(4) can calculate the low cross-efficiency 

values for interval data. 
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Similarly, the large cross-efficiency values 

of interval data can be computed with 

model (5).
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After all cross-efficiency values are 

computed, an efficiency matrix (CEM) can 

be constructed as shown in Table 1.For 

each column, 
[ , ]l u

dj djE E
 represents the 

lower and upper limits of the cross-

efficiency scores of DMUj by using the 

weights that DMUd (j=1,…,n) has chosen. 

The elements on the main diagonal are the 

limits obtained through self-evaluation 

which can be calculated by using models 

(2) and (3). 

 

Table 1. A generalized cross-efficiency matrix (CEM) 

Rating Rated DMUj 

DMUd 1 2 3 … n 

1 11 11[ , ]l uE E
 12 12[ , ]l uE E

 13 13[ , ]l uE E
 

… 1 1[ , ]l u

n nE E
 

2 21 21[ , ]l uE E
 22 22[ , ]l uE E

 23 23[ , ]l uE E
 

… 2 2[ , ]l u

n nE E
 

3 31 31[ , ]l uE E
 32 32[ , ]l uE E

 33 33[ , ]l uE E
 

… 3 3[ , ]l u

n nE E
 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… 

. 

. 

. 

N 1 1[ , ]l u

n nE E
 2 2[ , ]l u

n nE E
 3 3[ , ]l u

n nE E
 

… [ , ]l u

nn nnE E
 

 

 

Results  

 Proposed model has shown in figure 1., 

according to it, cross-efficiency method 

applied for two stages DMUs with interval 

data. So, 1)we consider lower bound in 

first stage of whole DMUs , Forming 

Crossover n*n table and then Compute the 

average elements of each row for DMU 

and then calculate distance of it from one , 

also, 2)we consider upper bound in first 

stage of whole DMUs , Forming Crossover 

n*n table and then Compute the average 

elements of each row for DMU and then 

calculate distance of it from one. Now, 

calculate the average of two above 

numbers. The smaller average has a better 

rank, so rank the first stage of DMUs. 

Similarly as above, for second stage of 

DMUs 1)we consider lower bound in 

second stage of whole DMUs , Forming 

Crossover n*n table and then Compute the 

average elements of each row for DMU 

and then calculate distance of it from one , 

also, 2)we consider upper bound in second 

stage of whole DMUs , Forming Crossover 

n*n table and then Compute the average 

elements of each row for DMU and then 

calculate distance of it from one. Now, 

Calculate the average of two above 

numbers. The smaller average have a 

better rank, so rank the second stage of 

DMUs. 

This approach can be used to comparison 

of DMUs with two stages. The proposed 

model Provide a solution to increase the 

efficiency of each DMU and Improving 

each stage of every DMU with the best 

performance available among DMUs in 

that stage. In other words, our model is a 

benchmark to DMUs with two stages. In 

order to prove the effectiveness of the 

proposed approach, numerical examples 
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are illustrated finally. We considered n 

DMUs with two stages and interval data. 

Then calculated cross efficiency for lower 

and upper bounds of first stages separately, 

and for lower and upper bounds of second 

stages.  Finally, the new approach enables 

us to ranking of first stage for n DMU and 

second stages of them. DMUs with the 

best rank can be used as benchmark for 

improving efficiency of other DMUs. 

The proposed method can be used for each 

network that include DMUs with two 

stages in production process. However, 

this paper is the first study that examined 

cross efficiency of DMUs in structure 

framework with interval data. 

 
Fig 1. Proposed Method 

 

 

Discussion 

 Assume there are n DMUs with two 

stages to be evaluated. Each DMU 

produces s outputs using min puts. Input r 

and output k for DMUj are denoted as rix
 

and kiy
 , respectively. The input and 

output data rix
 and kiy

are not assumed to 

be exactly obtained because of uncertainty. 

Only their bounded interval
,l u

ri ri rix x x   

, r=1,…,m and
,l u

ki ki kiy y y    , k=1,…,s 

with
0l

rix 
and

0l

kiy 
, are known. 
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Efficiency score of DMUs is interval and 

have lower and upper bound. 

Table 2.  and table 3. shows lower and 

upper bound of each DMUs with two 

stages, respectively.

Table 2. Lower bound of first and second stage for DMUs 

O2 O1 I2 I1 
 

 

3 2 5 4 DMU1 First 

stage 2 1 6 7 DMU2 

1 7 1 3 DMU3 

8 3 5 2 DMU1 Second 

stage 2 1 2 1 DMU2 

1 7 5 7 DMU3 

 

Table 3. upper bound of first and second stage for DMUs 

O2 O1 I2 I1 
 

 

6 4 6 6 DMU1 First 

stage 4 3 9 8 DMU2 

2 9 4 4 DMU3 

9 5 6 5 DMU1 Second 

stage 3 3 4 3 DMU2 

4 8 6 9 DMU3 

 

First, we calculate CCR  input oriented 

model for lower and upper bounds of first 

and second stage for DMUs. Results bring 

to table 4. and then table 5. And table 6. 

shows computing cross-efficiency for 

lower and upper bounds of DMUs with 

two stages, respectively.  

 
Table 4. CCR  input oriented model for lower and upper bounds of first and second stage for 

DMUs 

 

 

 

 

 

 

 

 

 
Table 5.cross-efficiency for lower bounds of first stage for DMUs 

First stage  

DMU3 DMU2 DMU1   

First 

stage 

0.166667 0.32  - DMU1 

0.164835  - 0.083333 DMU2 

-  0.2 0.113032 DMU3 

 

CCR Upper CCR Lower   

0.311355 0.128788 DMU1 First 

stage 0.174699 0.055556 DMU2 

1 0.514706 DMU3 

0.625 0.333333 DMU1 Second 

stage 0.75 0.125 DMU2 

0.353982 0.243056 DMU3 
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Table 6.cross-efficiency for lower bounds of second stage for DMUs 

Second stage  

DMU3 DMU2 DMU1   

Second 

stage 

0.243056 0.083333  - DMU1 

0.243056 -  0.15 DMU2 

-  0.083333 0.15 DMU3 

 

 
Table 7.cross-efficiency for upper bounds of first and second stage for DMUs 

First stage  

DMU3 DMU2 DMU1   

First 

stage 

1 1 -  DMU1 

0.810811 -  1 DMU2 

 - 1 0.34 DMU3 

 

 
Table 8.cross-efficiency for upper bounds of second stage for DMUs 

second stage  

DMU3 DMU2 DMU1   

Second 

stage 

0.353982 0.75  - DMU1 

0.353982 -  0.625 DMU2 

 - 0.75 0.625 DMU3 

 

For ranking of DMUs we Compute the 

average elements of lower bound and 

upper bound for each DMUs and then 

calculate distance of them from one. Now, 

Calculate the average of two numbers for 

each DMUs in first stage and then second 

stage. The smaller average have a better 

rank in each stage between all DMUs, so 

rank DMUs. The results are shown in table 

9.  

 

 

 

 

Table 9. Ranking of DMUs for first and second stages 

A 1-A U 1-A L A  U A L    

0.845162 0.841399 0.848926 0.158601 0.151074 DMU1 First 

stage 0.845079 0.841311 0.848847 0.158689 0.151153 DMU2 

0.835669 0.831406 0.839932 0.168594 0.160068 DMU3 

0.82581 0.821029 0.830592 0.178971 0.169408 DMU1 second 

stage 0.840764 0.836769 0.844759 0.163231 0.155241 DMU2 

0.845162 0.841399 0.848926 0.158601 0.151074 DMU3 

 

 

Conclusions  
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In many practical examples, the outputs 

and inputs of DMUs are not known 

exactly, for example, given as intervals. 

However, the existing classical interval 

DEA method is not able to rank the 

DMUs, but can only classify them as 

efficient or inefficient. In view of the 

drawbacks, we put forward our approach. 

Then new model is proposed. This 

approach can be used to comparison of 

DMUs with two stages. The proposed 

model Provide a solution to increase the 

efficiency of each DMU and Improving 

each stage of every DMU with the best 

performance available among DMUs in 

that stage. In other words, our model is a 

benchmark to DMUs with two stages. In 

order to prove the effectiveness of the 

proposed approach, numerical examples 

are illustrated finally. We considered n 

DMUs with two stages and interval data. 

Then calculated cross efficiency for lower 

and upper bounds of first stages separately, 

and for lower and upper bounds of second 

stages.  Finally, the new approach  enables 

us to ranking of first stage for n DMU and 

second stages of them. DMUs with the 

best rank can be used as benchmark for 

improving efficiency of other DMUs. 

Through the example, we can conclude 

that the proposed method is convenient to 

solve multiple attribute problems with 

interval data. It can make full use of the 

original data information, and provide 

complete and fair results for all DMUs. 

The method in this paper can be further 

expanded in the future.  
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