تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,227 |
تعداد دریافت فایل اصل مقاله | 54,843,889 |
An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 5، دوره 8، 4 (FALL) - شماره پیاپی 32، بهمن 2018، صفحه 255-258 اصل مقاله (316.95 K) | ||
نوع مقاله: Full Length Article | ||
نویسندگان | ||
Mohammad Moghaddas* ؛ Ghasem Tohidi | ||
Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran. | ||
چکیده | ||
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimization problem. the proposed neural network is proved to be stable and convergent to an optimal solution of the original problem. Finally, an examples is provided to show the applicability of the proposed neural network. | ||
کلیدواژهها | ||
Neural network؛ Nonconvex optimization؛ p-power convexification method؛ NCP function؛ Lagrangian function | ||
آمار تعداد مشاهده مقاله: 556 تعداد دریافت فایل اصل مقاله: 255 |