تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,242 |
تعداد دریافت فایل اصل مقاله | 54,843,894 |
On Best Proximity Points in metric and Banach spaces | ||
Theory of Approximation and Applications | ||
مقاله 5، دوره 15، شماره 1، مرداد 2021، صفحه 70-79 اصل مقاله (520.22 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
Hamid Mazaheri Tehrani* ؛ Raham Rahmani Jafarbeigi | ||
Department of Mathematics, Yazd University, Yazd, Iran | ||
چکیده | ||
Notice that best proximity point results have been studied to find necessary conditions such that the minimization problem minx∈A∪Bd(x,Tx) has at least one solution, where T is a cyclic mapping defined on A∪B. A point p ∈ A∪B is a best proximity point for T if and only if that is a solution of the minimization problem (2.1). Let (A,B) be a nonempty pair in a normed linear space X and S,T : A∪B → A∪B be two cyclic mappings. Let (A,B) be a nonempty pair in a normed linear space X and S,T : A∪B → A∪B be two cyclic mappings. A point p ∈ A∪B is called a common best proximity point for the cyclic pair (T,S) provided that ∥p − Tp∥ = d(A,B) = ∥p − Sp∥ In this paper, we survey the existence, uniqueness and convergence of a com- mon best proximity point for a cyclic weak ST − ϕ-contraction map, which is equivalent to study of a solution for a nonlinear programming problem in the setting of uniformly convex Banach spaces. We will provide examples to illustrate our results. | ||
کلیدواژهها | ||
Best proximity point؛ ϕ-Contraction؛ Weak ϕ-Contraction map | ||
آمار تعداد مشاهده مقاله: 151 تعداد دریافت فایل اصل مقاله: 63 |