تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,424,565 |
تعداد دریافت فایل اصل مقاله | 55,450,071 |
A new subclass of harmonic mappings with positive coefficients | ||
Journal of Linear and Topological Algebra | ||
مقاله 1، دوره 08، شماره 03، آبان 2019، صفحه 159-165 اصل مقاله (116.45 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
A. R. Haghighi* 1؛ N. Asghary2؛ A. Sedghi2 | ||
1Department of Mathematics, Technical and Vocational, University (TVU), Tehran, Iran | ||
2Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran | ||
چکیده | ||
Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk $U$ can be written as form $f =h+\bar{g}$, where $h$ and $g$ are analytic in $U$. In this paper, we introduce the class $S_H^1(\beta)$, where $1<\beta\leq 2$, and consisting of harmonic univalent function $f = h+\bar{g}$, where $h$ and $g$ are in the form $h(z) = z+\sum\limits_{n=2}^\infty |a_n|z^n$ and $g(z) =\sum\limits_{n=2}^\infty |b_n|\bar z^n$ for which $$\mathrm{Re}\left\{z^2(h''(z)+g''(z)) +2z(h'(z)+g'(z))-(h(z)+g(z))-(z-1)\right\}<\beta.$$ It is shown that the members of this class are convex and starlike. We obtain distortions bounds extreme point for functions belonging to this class, and we also show this class is closed under convolution and convex combinations. | ||
کلیدواژهها | ||
Convex combinations؛ extreme points؛ harmonic starlike functions؛ harmonic univalent functions | ||
مراجع | ||
[1] J. Clunie, T. Sheil-Small, Univalent functions, Ann. Acad. Sci. Fenn. Series A. 9 (1984), 3-25.
[2] K. K. Dixit, S. Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamk. J. Math. 41 (3) (2010), 261-269.
[3] A. R. Haghighi, A. Sadeghi, N. Asghary, A subclass of harmonic univalent functions, Acta Univ. Apul. 38 (2014), 1-10.
[4] S. Y. Karpuzogullari, M. Özturk, M. Y. Karadeniz, A subclass of harmonic univalent functions with negative coefficients, App. Math. Comp. 142 (2003), 469-476.
[5] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-528.
[6] H. Silverman, Univalent functions with negative coefficients, J. Math. Anal. App. 220 (1998), 283-289. | ||
آمار تعداد مشاهده مقاله: 474 تعداد دریافت فایل اصل مقاله: 377 |