تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,217 |
تعداد دریافت فایل اصل مقاله | 54,843,887 |
Effect of NaNO2, HNO3 and H2SO4 on the structure and reactivity of gamma-alumina | ||
Iranian Journal of Catalysis | ||
مقاله 5، دوره 10، شماره 1، خرداد 2020، صفحه 47-55 اصل مقاله (2.19 M) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Abdol Hossein Dabbagh1؛ Marzie Naderi1؛ Mehdi Zamani* 2 | ||
1Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran. | ||
2School of Chemistry, Damghan University, 36716-41167 Damghan, Iran. | ||
چکیده | ||
The influence of NaNO2, HNO3 and H2SO4 on the structure and morphology of gamma-alumina was investigated by XRD, BET, SEM and FT-IR spectroscopy. Selected amounts of NaNO2, HNO3 and H2SO4 were added to a solution of aluminum isopropoxide (as a precursor for the boehmite synthesis). The boehmite samples were calcined at 350 and 600 ℃ to form the semi-crystalline high surface area gamma-Al2O3. The reactivity and selectivity of the modified gamma-alumina catalysts were examined using dehydration reaction of 2-octanol. There was a good correlation between reactivity, selectivity and the amounts (and type) of the modification. The dominant product was cis-2-octene for all of the catalysts. Low conversion and high selectivity were obtained for dehydration of 2-octanol over alumina modified with NaNO2. High conversion, low selectivity and excessive isomerization were found for gamma-alumina catalyst modified with H2SO4. | ||
کلیدواژهها | ||
Alumina؛ Dehydration؛ Alcohol؛ Reactivity؛ Selectivity | ||
مراجع | ||
[1] E.J. Blanc, H. Pines, J. Org. Chem. 33 (1968) 2035-2043. [2] C.L. Kibby, S.S. Lande, W.K. Hall, J. Am. Chem. Soc. 94 (1972) 214-220. [3] H. Knozinger, H. Buhl, K. Kochloefl, J. Catal. 24 (1972) 57-68. [4] H.A. Dabbagh, C.G. Hughes, B.H. Davis, J. Catal. 133 (1992) 445-460. [5] H.A. Dabbagh, B.H. Davis, J. Org. Chem. 55 (1990) 2011-2016. [6] B. Shi, H.A. Dabbagh, B.H. Davis, J. Mol. Catal. A: Chem. 141 (1999) 257-262. [7] H.A. Dabbagh, J. Mohammad Salehi, J. Org. Chem. 63 (1998) 7619-7627. [8] V. Macho, M. Kralik, E. Jurecekova, J. Hudec, L. Jurecek, Appl. Catal. A 214 (2001) 251-257. [9] H.A. Dabbagh, M.S. Yalfani, B.H. Davis, J. Mol. Catal. A: Chem. 238 (2005) 72-77. [10] H.A. Dabbagh, K. Taban, M. Zamani, J. Mol. Catal. A: Chem. 326 (2010) 55-68. [11] H.A. Dabbagh, M. Zamani, B.H. Davis, J. Mol. Catal. A: Chem. 333 (2010) 54-68. [12] S. Roy, G. Mpourmpakis, D.Y. Hong, D.G. Vlachos, A. Bhan, R.J. Gorte, ACS Catal. (2012) 1846-1853. [13] A. Corma, Chem. Rev. 95 (1995) 559-614. [14] J.B. Peri, J. Phys. Chem. 69 (1965) 220-230. [15] K. Sohlberg, S.J. Pennycook, S.T. Pantelides, J. Am. Chem. Soc. 121 (1999) 7493-7499. [16] C. Wolverton, K.C. Hass, Phys. Rev. B 63 (2000) 024102. [17] X. Krokidis, P. Rayboud, A.E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, J. Phys. Chem. B 105 (2001) 5121-5130. [18] M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulhoat, J. Catal. 226 (2004) 54-68. [19] G. Paglia, C.E. Buckley, A.L. Rohl, B.A. Hunter, R.D. Hart, J.V. Hanna, L.T. Byrne, Phys. Rev. B 68 (2003) 144110. [20] G. Paglia, A.L. Rohl, C.E. Buckley, G.D. Gale, Phys. Rev. B 71 (2005) 224115. [21] M. Sun, A.E. Nelson, J. Adjaye, J. Phys. Chem. B 110 (2006) 2310-2317. [22] A.R. Ferreira, M.J.F. Martins, E. Konstantinova, R.B. Capaz, W.F. Souza, S.S.X. Chiaro, A.A. Leitão, J. Solid State Chem. 184 (2011) 1105-1111. [23] L. Smrcok, V. Langer, J. Krestan, Acta Cryst. C 62 (2006) i83. [24] G. Feng, C. Huo, C. Deng, L. Huang, Y. Li, J. Wang, H. Jiao, J. Mol. Catal. A: Chem. 304 (2009) 58-64. [25] P. Souza Santos, H. Souza Santos, S.P. Toledo, J. Mater. Res. 3 (2000) 104-114. [26] M.M. Amini, M. Mirzaee, J. Sol-Gel Sci. Technol. 36 (2005) 19-23. [27] L. Le Bihan, F. Dumeignil, E. Payen, J. Grimblot, J. Sol-Gel Sci. Technol. 24 (2002) 113-120. [28] Y. Takeda, Y. Hashimoto, H. Nasu, K. Kamiya, J. Ceram. Soc. Japan 110 (2002) 1025-1028. [29] K. Okada, T. Nagashima, Y. Kameshima, A. Yasumori, T. Takayuki, J. Colloid Interf. Sci. 253 (2002) 308-314. [30] K.M. Parida, A.C. Pradhan, J. Das, N. Sahu, Mater. Chem. Phys. 113 (2009) 244-248. [31] Y. Kim, Sep. Sci. Technol. 35 (2000) 2327-2341. [32] P. Manivasakan, V. Rajendran, P.R. Rauta, B.B. Sahu, B.K. Panda, Powder Technol. 211 (2011) 77-84. [33] M. Zamani, H.A. Dabbagh, Iran. J. Catal. 6 (2016) 345-353. [34] P. Alphonse, M. Courty, J. Colloid Interf. Sci. 290 (2005) 208-219. [35] D. Fauchadour, F. Kolenda, L. Rouleau, L. Barre, L. Normand, Stud. Surf. Sci. Catal. 143 (2002) 453-461. [36] C.R. Evanko, R.F. Delisio, D.K. Dzombak, J.W. Novak Jr., Colloids Surf. A Physicochem. Eng. Aspects 125 (1997) 95-107. [37] G. Zu, J. Shen, L. Zou, W. Wang, Y. Lian, Z. Zhang, A. Du, Chem. Mater. 25 (2013) 4757-4764. [38] G. Zu, J. Shen, X. Wei, X. Ni, Z. Zhang, J. Wang, G. Liu, J. Non-Cryst. Solids 357 (2001) 2903-2906. [39] H.A. Dabbagh, M. Zamani, Appl. Catal. A 404 (2011) 141-148. [40] T. Seki, S. Ikeda, M. Onaka, Microporous Mesoporous Mater. 96 (2006) 121-126. | ||
آمار تعداد مشاهده مقاله: 449 تعداد دریافت فایل اصل مقاله: 503 |