| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,621,210 |
| تعداد دریافت فایل اصل مقاله | 56,296,453 |
Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period | ||
| International Journal of Mathematical Modelling & Computations | ||
| مقاله 1، دوره 9، 2 (SPRING) - شماره پیاپی 34، شهریور 2019، صفحه 83-100 اصل مقاله (120.65 K) | ||
| نوع مقاله: Full Length Article | ||
| نویسندگان | ||
| Abdelali Raji_allah* 1؛ Hamad Talibi Alaoui2 | ||
| 1Department of Mathematics , Faculty of Sciences, Chouaib Doukkali University B. P. 20, 24000, El Jadida, Morocco | ||
| 2Department of Mathematics , Faculty of Sciences, Chouaib Doukkali University B. P. 20, 24000, El Jadida, Morocco | ||
| چکیده | ||
| In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using comparison arguments. In contrast, if R0 > 1, we see that the disease-free equilibrium is unstable and the endemic equilibrium is permanent and locally asymptotically stable and we give sufficient conditions for the global asymptotic stability of the endemic equilibrium. | ||
| کلیدواژهها | ||
| SIR epidemic model؛ Infectious period؛ Characteristic equation؛ Comparison arguments؛ Permanence؛ Global stability؛ Beddington-DeAngelis incidence | ||
|
آمار تعداد مشاهده مقاله: 532 تعداد دریافت فایل اصل مقاله: 357 |
||