تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,624 |
تعداد مشاهده مقاله | 78,435,457 |
تعداد دریافت فایل اصل مقاله | 55,456,047 |
Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 1، دوره 9، 2 (SPRING) - شماره پیاپی 34، شهریور 2019، صفحه 83-100 اصل مقاله (120.65 K) | ||
نوع مقاله: Full Length Article | ||
نویسندگان | ||
Abdelali Raji_allah* 1؛ Hamad Talibi Alaoui2 | ||
1Department of Mathematics , Faculty of Sciences, Chouaib Doukkali University B. P. 20, 24000, El Jadida, Morocco | ||
2Department of Mathematics , Faculty of Sciences, Chouaib Doukkali University B. P. 20, 24000, El Jadida, Morocco | ||
چکیده | ||
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using comparison arguments. In contrast, if R0 > 1, we see that the disease-free equilibrium is unstable and the endemic equilibrium is permanent and locally asymptotically stable and we give sufficient conditions for the global asymptotic stability of the endemic equilibrium. | ||
کلیدواژهها | ||
SIR epidemic model؛ Infectious period؛ Characteristic equation؛ Comparison arguments؛ Permanence؛ Global stability؛ Beddington-DeAngelis incidence | ||
آمار تعداد مشاهده مقاله: 526 تعداد دریافت فایل اصل مقاله: 355 |