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Abstract
Purpose  Rice-mill wastes are generated in large amounts in Ishiagu, Ebonyi State, Nigeria. These wastes can potentially 
be utilized for rice production and in improving soil attributes. This study evaluated the effects of rice-mill wastes on soil 
chemical properties and rice yield in sawah rice management.
Methods  A sawah rice field in an inland valley of southeastern Nigeria was used in 2014 and 2015 cropping seasons for the 
study. Sawah refers to an Indo-Malaysian term for rice paddy. It involves the manipulation of some soil physical properties 
in form of ecological engineering works, by bunding, puddling and leveling of lowland rice field for water control and man-
agement. Two rice-mill wastes [rice husk ash (RHA) and rice husk dust (RHD) applied at 0, 2.5, 5, 7.5, 10 and 12.5 t ha−1] 
and the control were built into a split-plot in a randomized complete block design with three replications.
Results  Bio-waste application had significant (p < 0.05) improved effects on the soil organic carbon, available P, soil avail-
able Si and total N compared with the unamended (control) treatment. There was significant (p < 0.05) increase in rice grain 
yield from 5.05 to 5.80 t ha−1 (for RHA) and 6.17–6.96 t/ha (for RHD) compared with 2.35–2.8 t ha−1 (control treatment) 
in both cropping seasons.
Conclusion  RHD and RHA treatments had significantly higher rice grain yield compared with the control treatment. Overall, 
rice grain yield was higher under RHD treatment compared with RHA treatment. This result demonstrated that RHA and 
RHD are potential agricultural resource for rice production in the study area.

Keywords  Rice-mill wastes · Sawah · Soil amendments · Chemical properties · Rice grain yield

Introduction

Silicon (Si) and NPK are important nutrients for rice produc-
tion (Ma et al. 2001). Adequate available Si uptake enhances 
the growth of rice by increasing rice tolerance to both abiotic 
and biotic stresses (Liang et al. 2007; Guntzer et al. 2012). Si 
availability is key to sustainable rice production, thus inad-
equate Si can limit rice yield production (Klotzbücher et al. 
2014). Generally, tropical soils have low available nutrients 
including Si due to soil degradation such as erosion, sedi-
ment transportation and leaching process (Meena et al. 2014; 
Li et al. 2014;). Intensive rice crop production can deplete 
soil available Si (Cornelis and Delvaux 2016) due to high 
uptake by rice plants (Ma et al. 2001; Makabe et al. 2009). 
Soil acidification in rice paddies can cause Si deficiency 
since pH affects Si availability in the soil (Tavakkoli et al. 
2011).
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A sawah lowland farming, which has a small-scale irriga-
tion scheme adapted for an integrated watershed manage-
ment, was suggested as a promising strategy to tackle soil 
erosion and sediment transportation in inland valleys (Hirose 
and Wakatsuki 2002; Hayashi and Wakatsuki 2002). Sawah 
is an Indo-Malaysian word for paddy. It is a lowland rice 
management system that involves bunding, puddling, lev-
eling of soil to ensure good water management via irrigation 
and drainage (Wakatsuki et al. 2005). Sawah system ensures 
that certain water level is maintained in field plots during 
the plant growing period, restores and replenishes soil nutri-
ents through geological fertilization and soil erosion control. 
The mechanisms of nutrient replenishments in sawah system 
encourage rice growth and enhance microbial populations, 
which improve biological nitrogen fixation.

Study has shown that rice-mill wastes can serve as source 
of Si fertilizer to mitigate Si deficiency in rice-based agricul-
ture (Song et al. 2014b). In southeastern Nigeria, chemical 
fertilizers are scarce and when available are often very costly 
for most resource-poor farmers. The use of chemical fertiliz-
ers to replenish lost nutrients in cultivated soil is negligible 
because most low-income farmers cannot afford the costs 
(Agbede and Kalu 1995).

Application of organic waste is recommended due to the 
potentials of organic waste to increase soil pH and nutri-
ents and thus reduce heavy mineral fertilizer application 
to agricultural soils (Unagwu et al. 2013; Unagwu 2014, 
2019; Nessa et al. 2016; Joardar and Rahman 2018). Under 
intensive agriculture, continuous chemical fertilizer applica-
tion is reported to increase soil acidity which creates nutri-
ent imbalance in the soil (Ojenyi 2000) and consequently 
reduces crop yield. The possible alternative for smallholder 
farmers to increase crop yield and achieve sustainable soil 
productivity is via organic amendment application (Oken-
muo et al. 2018; Unagwu et al. 2019). Crop residues improve 
soil nutrient availability, crop yields (Singh and Singer 
2006), improve the overall ecological balance of the crop 
production (Song et al. 2014b) and enhance soil–water rela-
tions of degraded soils (Nwite and Okolo 2016). Lal (2003) 
observed increased crop yield following organic waste 
application. Application of crop residues such as rice-mill 
wastes to agricultural soils improves soil fertility (Lehmann 
and Joseph 2009), nutrient use efficiency, nutrient cycling, 
and increases crop yield in rain-fed lowland rice systems 
(Seng et al. 2004; Song et al. 2014a). Rice-mill wastes can 
be applied to degraded soils to improve their fertility status 
(Nwite et al. 2012).

Ebonyi state, southeastern Nigeria, has numerous rice 
milling industries. These mills produced large quantities 
of fresh and partially burnt rice-mill wastes (bio-wastes). 
Despite the huge rice-mill wastes generated and the potential 
negative effects these wastes can have on the environment, 
the only means of disposing these wastes is by burning at the 

various dump sites (Nwite et al. 2012). Thus, this work eval-
uated the possibility of using the available rice-mill wastes 
to increase rice production, evaluated the effects of rice-mill 
wastes on some soil chemical properties and the relationship 
between the Si nutrient uptake and grain yield of rice.

Materials and methods

Description of the study area

A field study was conducted in lowland and undulating area 
of Ishiagu, Ebonyi State, Southeastern Nigeria, in 2014 and 
2015 cropping seasons. The study area is within latitude 
05°56′N and longitude 07°41′E of the derived savannah zone 
of the Southeastern Nigeria. The area has a wet and dry cli-
mate, with a mean annual temperature of about 30 °C and 
rainfall of 1350 mm, which spans from April to October 
while the dry season spans from November to March each 
year. The geology of the study area comprises sandy shales 
and has fine-grained micaceous sandstones and belongs to 
the Asu River Group (Ezeh and Chukwu 2011). The soils are 
Aeric Tropoaquent (USDA 1998) or Gleyic Cambisol (FAO 
1988) and have moderate soil organic carbon (SOC), low pH 
and cation exchange capacity (CEC).

Field preparation

The experimental field was divided into two different main 
plots. Two rice-mill wastes [rice husk ash (RHA) and rice 
husk dust (RHD)] constituted the main plots. The main plots 
were demarcated by a 0.6-m raised bund. Six different levels 
(0, 2.5, 5.0, 7.5, 10.0 and 12.5 t/ha) of RHA and RHD con-
stituted the sub-plots. The treatments were replicated three 
times. Poultry dropping (PD) was applied as basal applica-
tion at 10 t/ha to provide additional N since N content of 
rice-mill wastes was insufficient for adequate rice growth 
and yield performance (Nwite et al. 2011). Each sub-plot 
(6 m × 6 m) was demarcated with a raised 0.6-m bunds, 
plowed, puddled, leveled, and bunded with inlet and outlet 
channels for irrigation and drainage. Water was supplied, 
controlled and maintained via the inlets and outlets chan-
nels from 2 weeks after transplanting to the grains ripening 
stage. RHA and RHD were incorporated manually in the 
sub-plots at 20 cm soil depth, 2 weeks before transplant-
ing. Oryza sativa var FARO 52 (WITA 4), a high-tillering 
rice variety, was used as the test crop in this study. The rice 
seedlings were first raised in the nursery. After 3 weeks, the 
seedlings were transplanted to the plots (spacing distance 
was 20 cm × 20 cm) at two seedlings per row. At maturity, 
rice grains were harvested dry and the grain yield was deter-
mined by weight.
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Soil sampling and laboratory analyses

Bulk soil samples were collected from 0 to 20 cm depth 
before treatment application for pre-planting soil analysis 
(Hence, the reason why PD was added as basal applica-
tion.). Similarly, after each cropping season (after harvest), 
soil samples were taken from the amended plots, air-dried 
and sieved through 2.0-mm mesh and taken to laboratory 
for chemical analyses. The soil pH was determined in dis-
tilled water and 0.1 N KCl solution using a soil solution of 
1:2.5 (Mclean 1982). SOC was determined by wet oxidation 
method (Walkley and Black 1934) as modified by Nelson 
and Sommers (1982). Total nitrogen (TN) was determined 
using semi-micro-Kjeldahl methods (Bremner and Mulva-
ney 1982). Soil available Si was determined in a 1 mol L−1 
acetate buffer (pH 4.0) at a 1:10 ratio for 5 h at 40 °C while 
shaking, occasionally (Imaizumi and Yoshida 1958). Bray II 
method was used in determining available P (Bray and Kurtz 
1945). More so, the nutrient contents of the rice-mill wastes 
were determined following the above methods.

Statistical analysis

Data generated from the study were analyzed using GEN-
STAT 3 7.2 Edition. Significant treatment means were 

separated and compared using least significant difference 
(LSD) at 5% probability level.

Results and discussion

Soil analysis

Some basic physical and chemical properties of the soil 
used in the present study as the medium for plant growth 
before rice-mill waste application are shown in Table 1. The 
test soil was sandy clay and was associated with low pH 
(4.8), SOC (11.4 g kg−1) and available Si (31 mg kg−1). The 
low nutrient status observed for the test soil is attributed to 
continuous cropping, increased land use intensity and inad-
equate application of organic amendments.

Organic amendment analysis

The composition of rice-mill waste and poultry manure is 
presented in Table 2. The RHD had the highest SOC, fol-
lowed by RHA, while PD recorded the lowest SOC. The 
TN was higher in poultry dropping than for RHA (Table 2). 
Except for available Ca, the result showed that RHA had 
higher available K, Mg and P compared with PD and RHD, 
respectively.

Further, the C:N in PD was lower than that of RHD and 
RHA. The high C:N associated with RHD and RHA can 
negatively affect soil N availability for plant uptake due to 
N immobilization by the soil microbes. Hence, the reason 
why PD was added as basal application.

Effects of bio‑waste and application rates on soil 
chemical properties

Soil pH

The soil pH was significantly affected following rice-mill 
waste application across the cropping seasons (Table 3). In 
both 2014 and 2015 cropping seasons RHD and RHA had 
significantly higher soil pH compared with the unamended 
treatment (0  t ha−1) The amended plots had 2.1–23.2% 
increase in soil pH when compared with the initial soil pH 

Table 1   Physico-chemical properties of the soil (0–20  cm) before 
rice-mill waste application

TN total nitrogen, SOC soil organic carbon

Soil properties Values

Clay (%) 20.0
Silt (%) 23.0
Fine sand (%) 53.0
Coarse sand (%) 4.00
Textural class Sandy clay
SOC (g kg−1) 11.4
TN (g kg−1) 0.84
pH (H2O) 4.80
Soil bioavailable Si (mg kg−1) 31.0
Available P (mg kg−1) 5.60

Table 2   Properties of the 
organic amendment used in the 
study

PD poultry droppings, RHD rice husk dust, RHA rice husk ash, OC organic carbon, TN total nitrogen, C:N 
carbon to nitrogen ratio

Amendments OC TN (%) Available K (%) Available 
Ca (%)

Available 
Mg (%)

Available P (%) C:N

PD 16.5 2.10 0.48 14.4 1.20 2.55 7.86
RHD 33.7 0.70 0.11 0.36 0.38 0.49 48.1
RHA 23.9 0.06 0.65 1.00 1.40 11.9 398.3
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(Table 1). The high soil pH in the amended plots is attrib-
uted to high Ca, Mg and K associated with the rice-mill 
waste whose effect on the soil can be likened to that of lime 
(Lickaz 2002). Mbah et al. (2017) reported that soil pH 
increases following organic waste application.

Soil organic carbon (SOC)

Overall, there was significant effect on the SOC with rice-
mill waste application. In 2014 and 2015 cropping seasons, 
SOC in RHA ranged from 6.27–8.20 to 7.38–10.1 g kg−1 
and from 8.27–10.4 to 7.63–10.3 g kg−1 for RHD, respec-
tively. The RHA and RHD treatments did not significantly 
(p < 0.05) affect their SOC content in both cropping sea-
sons (Table 3). Increase in treatment application rates sig-
nificantly increased the SOC, across both cropping seasons 
(Table 3). This is due to the high SOC associated with rice-
mill waste.

Total nitrogen (TN)

All the amended plots significantly improved the TN rela-
tive to the unamended plot. Across treatment application 
rate, RHA and RHD did not significantly (p > 0.05) differ in 
their TN content in the first year of application (2014 crop-
ping season), but significantly improved the soil TN in 2015 
(Table 4). As anticipated, increase in RHD and RHA appli-
cation rates significantly (p > 0.05) increased the TN across 
both cropping seasons (Table 4). The TN in the amended 
plots was higher than the initial TN (Table 1). This is due 
to organic amendment applied and due to the sawah system 
mechanisms that encourage replenishment of nutrients for 
rice growth, as well as enhance microbial population help 
in nitrogen fixation (Nwite et al. 2016a). In 2015 cropping 
season, increase in treatment application rates beyond 10 t 
ha−1 significantly reduced the TN by 22% and 63%, for RHA 
and RHD, respectively.

Table 3   Effect of treatments 
and application rates on soil pH 
and soil organic carbon

RHA rice husk ash, RHD rice husk dust, LSD least significant difference, NS non-significant

Treatments Treatments rates (t ha−1) Mean

0 2.5 5.0 7.5 10.0 12.5

Soil pH (H2O)
 Year 1 (2014 cropping season)
  RHA 4.73 5.5 5.63 5.93 5.47 4.90 5.36
  RHD 4.53 4.97 4.90 5.23 5.30 5.37 5.05
  Mean 4.63 5.23 5.27 5.58 5.38 5.13 5.21
  LSD (0.05) soil treatments = 0.276; p = 0.040
  LSD (0.05) soil treatment rates = 0.371; p < 0.001
  LSD (0.05) interaction = 0.495; p = 0.027

 Year 2 (2015 cropping season)
  RHA 4.87 5.20 5.67 5.80 5.63 5.97 5.52
  RHD 4.97 5.43 5.60 5.20 6.07 5.30 5.43
  Mean 4.92 5.32 5.63 5.50 5.85 5.63 5.48
  LSD (0.05) soil treatments = NS; p = 0.568
  LSD (0.05) soil treatment rates = 0.395; p = 0.002

Soil organic carbon (g kg−1)
 Year 1 (2014 cropping season)
  RHA 6.27 7.97 7.87 9.31 7.27 8.20 7.81
  RHD 8.27 10.3 9.37 7.6 9.13 10.4 9.17
  Mean 7.27 9.12 8.62 8.46 8.20 9.30 8.49
  LSD (0.05) soil treatments = NS; p = 0.158
  LSD (0.05) soil treatment rates = 0.837; p < 0.001
  LSD (0.05) interaction = 2.009; p < 0.001

 Year 2 (2015 cropping season)
  RHA 7.38 9.37 9.68 10.13 9.65 9.25 9.24
  RHD 7.63 8.73 9.07 10.3 10.07 9.67 9.24
  Mean 7.38 9.37 9.68 10.13 9.65 9.25 9.24
  LSD (0.05) soil treatments = NS; p = 1.00
  LSD (0.05) soil treatment rates = 0.915; p < 0.001
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Available P

In both 2014 and 2015 cropping seasons, RHA and RHD 
application significantly affected available P. Relative to the 
initial available P (5.6 mg kg−1) associated with the test soil 
(Table 1), in 2014, RHA and RHD treatments increased the 
mean available P from 5.6 to 11.9–10.7 mg kg−1, respec-
tively, and 14.6–15.4 mg kg−1 in 2015 (Table 4). Across 

the treatments and application rates, RHA and RHD had 
significantly higher available P than the unamended plot. 
The significant increases in available P associated with RHA 
and RHD compared with the unamended plot is due to high 
available P in the rice-mill wastes applied. The unamended 
plots (Table 4) record higher available P content relative to 
the initial available P (Table 1). This is linked to the contri-
butions of sawah system in improving soil fertility status in 

Table 4   Effect of treatments 
and application rates on total 
nitrogen, available P and soil 
available Si

RHA rice husk ash, RHD rice husk dust, LSD least significant difference, NS non-significant

Treatments Treatments rates (t ha−1) Mean

0 2.5 5.0 7.5 10.0 12.5

Soil total nitrogen (g kg−1)
 Year 1 (2014 cropping season)
  RHA 0.81 0.90 1.08 1.09 1.20 1.07 1.02
  RHD 0.91 0.93 1.10 1.09 1.11 1.21 1.06
  Mean 0.86 0.92 1.09 1.09 1.16 1.14 1.04
  LSD (0.05) treatments = NS; p = 0.130
  LSD (0.05) treatment rates = 0.038; p < 0.001

 Year 2 (2015 cropping season)
  RHA 1.13 2.24 1.32 1.53 1.58 1.24 1.51
  RHD 1.12 7.57 10.3 14.1 18.3 6.86 9.71
  Mean 1.13 4.9 5.81 7.83 9.93 4.05 9.71
  LSD (0.05) treatments = 2.05; p = 0.003
  LSD (0.05) treatments rates = 2.67; p < 0.001

Available P (mg kg−1)
 Year 1 (2014 cropping season)
  RHA 10.8 12.3 10.9 12.7 11.8 12.8 11.9
  RHD 9.38 9.87 10.7 10.7 11.9 11.6 10.7
  Mean 10.1 11.1 10.8 11.7 11.8 12.2 11.2
  LSD (0.05) treatments = 0.3482; p = 0.005
  LSD (0.05) treatment rates = 0.4465; p < 0.001

 Year 2 (2015 cropping season)
  RHA 11.4 13.3 15.4 14.4 15.4 15.8 14.3
  RHD 11.8 16.3 14.2 16.6 16.4 16.9 15.4
  Mean 11.6 14.8 14.8 15.5 15.9 16.3 14.8
  LSD (0.05) treatments = 0.157; p = 0.001
  LSD (0.05) treatment rates = 1.03; p = 0.001

 Soil available Si (mg kg−1)
 Year 1 (2014 cropping season)
  RHA 30.7 53.0 58.7 48.0 88.3 73.0 58.6
  RHD 25.7 37.0 44.7 90.7 78.7 56.7 55.6
  Mean 28.2 45.0 51.7 69.3 83.5 64.8 57.1
  LSD (0.05) treatments = NS; p = 0.172
  LSD (0.05) treatment rates = 9.75; p = < 0.001

 Year 2 (2015 cropping season)
  RHA 120 163 148 192 175 146 157
  RHD 146 158 168 170 157 134 155
  Mean 133 160 158 181 166 140 156
  LSD (0.05) treatments = 1.45; p = 0.041
  LSD (0.05) treatment rates = 2.06; p < 0.001
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lowland rice field. This is because pre-farm activities such 
as bunding, surface field leveling, irrigation and drainage 
modifications in the sawah system help in preventing ero-
sion (Nwite et al. 2016b). Sawah system has been reported 
to have positive effect in restoring/replenishing lowland with 
nutrients due to geological fertilization (Wakatsuki et al. 
2005).

Soil available Si

RHA and RHD treatments and their application rates had 
significant effect on soil available Si (Table 4). Soil available 
Si in the amended treatments was not significantly differ-
ent in the first cropping year of study but differed signifi-
cantly (p < 0.05) in the second cropping year. RHA treatment 
mean for soil available Si was significantly higher compared 
with RHD treatment (Table 4). As anticipated, soil avail-
able Si recorded for RHA and RHD in 2014 and 2015 crop-
ping seasons was higher than the initial soil available Si 
(31.0 mg kg−1). The present results corroborate the findings 
of Magale et al. (2011) and Lima et al. (2011) who reported 
that application of increasing amounts of Si-rich sources 
enhanced greater availability of Si in the soil. Across both 
cropping seasons, increase in treatment application rates sig-
nificantly increased soil available Si (Table 4). Soil available 
Si range was 30.7–88.3 mg kg−1 and 25.7–90.7 mg kg−1 for 
RHA and RHD amended plots, respectively. RHA and RHD 
treatments applied beyond 10 t ha−1 significantly reduced 
the soil available Si. This result suggests that the optimum 
application level of RHA and RHD treatments required 
to enhance the soil available Si level in the study area is 
about 10 t ha−1. The increase in soil available Si from 31 to 
192 mg kg−1 following bio-waste application is comparable 

to the work of Song et al. (2014a) who reported a signifi-
cant increase in soil available Si (130–270 mg kg−1) after 
10 years of manure treatment (rice crop residues) application 
in Eastern China. When incorporated into the soil, rice husk 
contains approximately 86% of Si which could be taken up 
by rice plants (Klotzbücher et al. 2015). Thus, RHA and 
RHD are potential alternative resources for improving soil 
available Si.

Rice grain yield (t ha−1) as affected by organic 
treatments and application rates

Rice-mill wastes and their application rates had significant 
(p < 0.05) effect on rice grain yield in the 2014 and 2015 
cropping seasons (Table 5). The grain yield mean values 
ranged from 5.05–6.17 to 5.80–6.96 t ha−1 in the 2014 and 
2015 cropping seasons, respectively. The amended plots had 
89.1–107.4% increased grain yield compared with the una-
mended plot. Overall, rice yield obtained in the two crop-
ping seasons was above the usual < 2 t ha−1 often obtained 
by the local smallholder farmers under non-sawah farm-
ing system. The higher yield obtained can be attributed to 
improvement in available Si and soil fertility index following 
the application of RHA and RHD treatments. The results 
obtained corroborated to that of Datta and Shinde (1985), 
who reported that under upland and water-logged conditions, 
application of Si in rice field increased the rice grain yield. 
Further, Mukhtar et al. (2012) observed that Si nutrition 
significantly affected crop growth, physiological attributes 
and yield parameters.

In a similar study, Nwite et al. (2016a) reported that 
sawah tillage environments significantly increased rice 

Table 5   Effect of treatments 
and application rates on rice 
grain yield (t ha−1)

RHA rice husk ash, RHD rice husk dust, LSD least significant difference, NS non-significant

Treatments Treatments rates (t ha−1) Mean

0 2.5 5.0 7.5 10.0 12.5

Year 1 (2014)
 RHA 2.56 5.43 5.74 4.84 6.62 5.12 5.05
 RHD 3.67 5.28 6.56 7.61 7.11 6.79 6.17
 Mean 3.11 5.35 6.15 6.23 6.87 5.96 5.61
 LSD (0.05) soil treatments = 0.763; p = 0.024
 LSD (0.05) soil treatment rates = 1.210; p < 0.001
 LSD (0.05) interaction of treatments × rates = NS; p = 0.228

Year 2 (2015)
 RHA 2.83 6.10 5.90 6.93 6.70 6.33 5.80
 RHD 4.50 6.30 7.97 7.37 7.63 8.00 6.96
 Mean 3.67 6.20 6.93 7.15 7.17 7.17 6.38
 LSD (0.05) soil treatments = 0.172; p < 0.001
 LSD (0.05) soil treatment rates = 1.082; p < 0.001
 LSD (0.05) interaction of treatments × rates = NS; p = 0.414
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grain yield than the farmers’ growing environment in a 
3-year study.

In 2014 cropping season, RHA applied at 10.0 t ha−1 
had a significantly higher (6.62 t ha−1) rice grain yield 
compared with the other RHA rates applied. Beyond 10 t/
ha RHA application rates, there was significant reduction 
in rice yield. In 2015, the RHA applied at 7.5 t ha−1 had 
highest (p < 0.05) yield (6.93 t ha−1). There was signifi-
cant reduction in rice yield at increasing RHA applica-
tion rates. For RHD, the highest yield (7.61 t ha−1) was 
obtained at the application of 7.5 t ha−1 in 2014 and 5 t/
ha in 2015. The yields obtained at these rates did not vary 
significantly with increasing RHD application rates. The 
regression analysis between the rice grain yield and soil 
available Si was significant at p < 0.05 (Fig. 1). Rice grain 
yields exhibited quadratic relationship with soil available 
Si. This result could suggest that the rates below 10  t 
ha−1 could be sufficient, although further long-time inves-
tigation is needed. The observed variations in the soil 
available Si in relation to rice grain yield across the two 
seasons following RHA and RHD application suggest that 
the treatments differ in their mineralization rate which 
resulted in the observed varied effect of rice grain yield 
(Klotzbücher et al. 2011). In addition to increasing soil 
NPK content, this study demonstrates that increasing the 
available Si of lowland soils can significantly improve 
rice yield.

Conclusion

The study evaluated the effects of RHA and RHD treat-
ments on soil Si availability and other fertility indices on 
the growth and yield of rice in a sawah-based rice cropping 
system. Overall, RHA and RHD treatments had significantly 
higher yield compared with the unamended plot. For RHA, 
5–7.5 t ha−1 application rate gave the highest rice grain yield 
while the highest yield from RHD was obtained between 10 
and 12.5 t ha−1 application rates across the cropping seasons. 
The results obtained indicated that RHA and RHD applica-
tion increased rice grain yield. These amendments can be a 
potential source of soil available Si and which can be replace 
mineral Si fertilizers which are costly and unaffordable to 
local smallholder rice farmers. Our investigations show that 
continuous rice-mill waste application can increase the soil 
available Si, other fertility index and consequently increase 
rice yield. The effect of rice-mill wastes on rice performance 
merits long-term studies to further understand the underly-
ing mechanisms associated with Si release, mineralization 
and its subsequent uptake by rice plant in a sawah managed 
rice field and to ascertain the optimum bio-waste application 
rates to increase rice yield.
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