تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,347 |
تعداد دریافت فایل اصل مقاله | 54,843,964 |
Fermented soil amendments made from stabilized biosolids and fly ash improve maize (Zea mays L.) nutrition and growth | ||
International Journal of Recycling Organic Waste in Agriculture | ||
مقاله 7، دوره 9، شماره 1، خرداد 2020، صفحه 85-98 اصل مقاله (573.38 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30486/ijrowa.2020.671671 | ||
نویسندگان | ||
Karla E. Cortés-Tello1؛ Pablo F Jaramillo-López* 1، 2 | ||
1Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, CP. 58190, Morelia, Michoacán, México | ||
2CONACYT- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, CP. 58190, Morelia, Michoacán, México | ||
چکیده | ||
Purpose To evaluate the feasibility of using biosolids and fly ash, processed through the Bokashi fermentation process, as growth promoters of maize. These two components were included because they are generated in large amounts and represent an environmental problem all over the world. Additionally, these materials have high concentrations of nutrients, but they have not been widely used because they also contain traces of heavy metals. Methods Components of regular Bokashi are as follows: soil, cow manure, chopped corn stalks, wheat bran, yeast, crushed charcoal, water and brown sugar. For this research, cow manure was replaced with biosolids, and charcoal was replaced with fly ash. The materials were mixed, inoculated with Saccharomyces cerevisiae and allowed to be fermented until the temperature stabilized. The maize plants were grown in four treatments: Bokashi with biosolids and fly ash, Bokashi with cow manure, chemical fertilizer and an unamended control. Results The plants grown in the Bokashi with biosolids and fly ash (BBFA) treatment had the highest aerial biomass (49.71 g), total biomass (69.82 g), N concentration (242 % higher than the control) and P concentration (94% higher than the control). Cadmium and lead concentrations were below the detection limits both in the soil amendments and in the tissue of maize plants. Conclusion Biosolids and fly ash processed by the Bokashi technique resulted in improved nutrition and growth of the maize plants. Through Bokashi fermentation, biosolids and fly ash can be safely used in agricultural or forestry applications. | ||
تازه های تحقیق | ||
کلیدواژهها | ||
Biosolids؛ Fly ash؛ Fermented soil amendments؛ Bokashi | ||
مراجع | ||
Aguilar R, Carreón-Abud Y, López-Carmona D, Larsen J (2017) Organic fertilizers alter the composition of pathogens and arbuscular mycorrhizal fungi in maize roots. J Phytopathol 165(7-8): 448-454. https://doi.org/ 10.1111/jph.12579
Alattar MA, Green TR, Henry J, Gulca V, Tizazu M, Bergstrom R, Popa R (2012) Effect of microaerobic fermentation in preprocessing fibrous lignocellulosic materials. Appl Biochem Biotechnol 167(4): 909-917. https://doi.org/10.1007/s12010-012-9717-5
Alves MC, González AP, Colodro G, Perecin HJr, Vidal-Vázquez E (2006) Influence of biosolids rate on chemical properties of an oxisol in São Paulo, Brazil. Commun Soil Sci Plant Anal 37(15–20): 2481–2493. https://doi.org/10.1080/00103620600820204
Andreev N, Ronteltap M, Lens PN, Boincean B, Bulat L, Zubcov E (2016) Lacto-fermented mix of faeces and bio-waste supplemented by biochar improves the growth and yield of corn (Zea mays L.). Agric Ecosyst Environ 232: 263-272. https://doi.org/10.1016/j.agee.2016.08.012
Antille DL, Sakrabani R, Godwin RJ (2014) Phosphorus release characteristics from biosolids-derived organomineral fertilizers. Commun Soil Sci Plant Anal 45(19): 2565-2576. https://doi.org/10.1080/00103624. 2014.912300
Arulrajah A, Disfani MM, Suthagaran V, Imteaz M (2011) Select chemical and engineering properties of wastewater biosolids. Waste Manag 31(12): 2522-2526. https://doi.org/10.1016/j.wasman.2011.07.014
Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: A global review. Prog Nat Sci 19(10): 1173-1186. https://doi.org/10.1016/j.pnsc.2008.12.006Boechat CL, Santos JAG, Accioly AMA (2013) Net mineralization nitrogen and soil chemical changes with application of organic wastes with 'Fermented bokashi compost'. Acta Sci Agron 35(2): 257-264. http://dx.doi.org/10.4025/actasciagron.v35i2.15133Brännvall E, Wolters M, Sjöblom R, Kumpiene J (2015) Elements availability in soil fertilized with pelletized fly ash and biosolids. J Environ Manag 159: 27-36. https://doi.org/10.1016/j.jenvman.2015.05.032
Brown ME, Funk CC (2008) Food security under climate change. Science 319(5863): 580-581. https://doi.org/10. 1126/science.1154102
Cahoon LB (2015) Coal use as a cause of water quality impairment. In: Ahuja S (ed) Food, Energy, and Water, The Chemistry Connection. Elsevier, Amsterdam, pp 261-275.
Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth´s nitrogen cycle. Science 330(6001): 192-196. http://doi.org/10.1126/science.1186120
Carlile C, Nadiger S, Burken J (2013) Effect of fly ash on growth of mustard and corn. Biosci Biotech Res Asia 10(2):551-557. http://dx.doi.org/10.13005/bbra/1164
Castaldi P, Santona L, Melis P (2006) Evolution of heavy metals mobility during municipal solid waste composting. Fresenius Environ Bull 15(9):1133–1140.
Černý J, Balík J, Kulhánek M, Časová K, Nedvěd V (2010) Mineral and organic fertilization efficiency in long-term stationary experiments. Plant Soil Environ 56(1):28-36. https://doi.org/10.17221/200/2009-PSE
Cuevas G, Walter I (2004) Metales pesados en maíz (Zea mays L.) cultivado en un suelo enmendado con diferentes dosis de compost de lodo residual. Rev Int Contam Ambie 20(2): 59–68. http://www.redalyc.org/articulo. oa?id=37000202
Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. https://doi.org/10.1126/science.1156401
Dwivedi A, Jain MK (2014) Fly ash - waste management and overview: A Review. Recent Res Sci Technol 6(1):30-35. https://updatepublishing.com/journal/index.php/rrst/ article/view/1157
Fang M, Wong MH, Wong JWC (2001) Digestion activity of thermophilic bacteria isolated from ash-amended sewage sludge compost. Water Air Soil Pollut 126:1-12. https://doi.org/10.1023/A:1005270428647
Farasat S, Namli A (2016) Evaluating effects of sewage sludge on soil biochemical properties amounts (incubation experiment). Fresenius Environ Bull 25(5):1483–1492. https://www.researchgate.net/publication/305702288
Fatunla K, Inam E, Essien J, Dan E, Odon A, Kang S, Semple KT (2017) Influence of composting and thermal processing on the survival of microbial pathogens and nutritional status of Nigeria sewage sludge. Int J Recycl Org Waste Agric 6(4): 301-310. https://doi.org/10.1007/ s40093-017-0177-3
Formowitz B, Elango F, Okumoto S, Müller T, Buerkert A (2007) The role of "effective microorganisms" in the composting of banana (Musa ssp.) residues. J Plant Nutr Soil Sci 170(5):649-656. https://doi.org/10.1002/jpln. 200700002
Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. AMBIO 31(2):64–72. https://doi.org/10.1579/0044-7447-31.2.64
Gianinazzi S, Gollotte A, Marie-Noëlle B, Diederik van T, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519-530. https://doi.org/10.1007/ s00572-010-0333-3
González-Flores E, Ramos-Barragán JE, Tornero-Campante MA, Murillo-Murillo M (2017) Evaluación de dosis de biosólidos urbanos en maíz bajo condiciones de invernadero. Rev Mex Cienc Agric 8(1):117–30. http://dx.doi.org/10.29312/remexca.v8i1.76Güsewell S, Koerselman W, Verhoeven JT (2003) Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13(2): 372-384. https://doi.org/10.1890/10510761(2003)013[0372:BNRAIO]2.0.CO;2
Hädicke O, Grammel H, Klamt S (2011) Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst Biol 5:150. https://doi.org/10.1186/1752-0509-5-150
Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18-26. https://doi.org/10.1890/100008
Jaramillo-López PF, Powell MA, Hayden DB (2011) The influence of soil amendments (fly ash and stabilized biosolids) on Meloidogyne hapla in microplots planted with tomato (Lycopersicon esculentum). Nematropica 41(1):141-149. https://journals.flvc.org/nematropica/ article/view/76308
Jaramillo-López PF, Powell MA (2013) Application of stabilized biosolids and fly ash mixtures as soil amendments and their impact on free living nematodes and carrot (Daucus carota). Int J Recycl Org Waste Agric 2(22): 2-10. https://doi.org/10.1186/2251-7715-2-22
Jaramillo-López PF, Ramírez MI, Pérez-Salicrup DR (2015) Impacts of Bokashi on survival and growth rates of Pinus pseudostrobus in community reforestation projects. J Environ Manag 150:48-56. https://doi.org/ 10.1016/j.jenvman.2014.11.003
Kabirinejad S, Hoodaji M (2012) The effects of biosolid application on soil chemical properties and Zea mays
nutrition. Int J Recycl Org Waste Agric 1:4. https://doi. org/10.1186/2251-7715-1-4
Kahrl F, Li Y, Su Y, Tennigkeit T, Wilkes A, Xu J (2010) Greenhouse gas emissions from nitrogen fertilizer use in China. Environ Sci Policy 13(8): 688-694. https://doi. org/10.1016/j.envsci.2010.07.006
Kaur R, Goyal D (2015) Mineralogical studies of coal fly ash for soil application in agriculture. Particul Sci Technol 33(1): 76-80. https://doi.org/10.1080/02726351.2014. 938378
Kishor P, Ghosh AK, Kumar D (2010) Use of fly ash in agriculture: a way to improve soil fertility and its productivity. Asian J Agric Res 4(1):1-14. https://doi. org/10.3923/ajar.2010.1.14
Lai KM, Ye DY, Wong JWC (1999) Enzyme activities in a sandy soil amended with sewage sludge and coal fly ash. Water Air Soil Pollut 113:261–272. https://doi.org/10. 1023/A:1005025605302
Lenth RV (2016) Least-squares means: The R package lsmeans. J Stat Softw 69(1): 1-33. https://doi:10.18637/ jss.v069.i01
Lima CEP, Fontenelle MR, Silva LRB, Soares DC, Moita AW, Zandonadi DB, Souza RB, Lopes CA (2015) Short-term changes in fertility attributes and soil organic matter caused by the addition of EM Bokashis in two tropical soils. Int J Agron 2015: 1-9.
Lu CC, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9:181-192. https://doi.org/10.5194/essd-9-181-2017
McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. Nutrient management module 8(2): 1-12.
http://landresources.montana.edu/nm/documents/NM8.pdf. Accessed 10 June 2019
Murillo-Amador B, Morales-Prado LE, Troyo-Diéguez E, Córdoba-Matson MV, Hernández-Montiel LG, Rueda-Puente EO, Nieto-Garibay A (2015) Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Front Plant Sci 6:549. https:// doi.org/10.3389/fpls.2015.00549
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31-36. https://doi.org/10.1016/S0003 -2670(00)88444-5
NOM-004-SEMARNAT-2002 (2003) Protección ambiental- lodos y biosólidos- Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. In: Diario Oficial de la Federación, México, pp 18–60. http://siga.jalisco.gob.mx/assets/ documentos/normatividad/nom004semarnat2002.htm. Accessed 8 June 2019
OMAFRA (1996) Guidelines for the utilization of biosolids and other wastes on agricultural land. Ministry of environment and energy, Ontario, Canada. https:// archive.org/details/guidelinesforuti00ontauoft. Accessed 8 June 2019.
Ortas I (2011) Effect of selected mycorrhizal inoculation on Phosphorus sustainability in sterile and non-sterile soils in the Harran plain in South Anatolia. J Plant Nutr 26(1): 1-17. https://doi.org/10.1081/PLN-120016494
Pampuro N, Dinuccio E, Balsari P, Cavallo E (2016) Evaluation of two composting strategies for making pig slurry solid fraction suitable for pelletizing. Atmos Pollut Res 7(2): 288-293. https://doi.org/10.1016/j.apr. 2015.10.001
Pampuro N, Bertora C, Sacco D, Dinuccio E, Grignani C, Balsari P, Cavallo E, Bernal, MP (2017a) Fertilizer value and greenhouse gas emissions from solid fraction pig slurry compost pellets. J Agric Sci 155(10): 1646-1658. https://doi.org/10.1017/S002185961700079X
Pampuro N, Bisaglia C, Romano E, Brambilla M, Pedretti EF, Cavallo E (2017b) Phytotoxicity and chemical characterization of compost derived from pig slurry solid fraction for organic pellet production. Agriculture 7(11):94. https://doi.org/10.3390/agriculture7110094
Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16–27. https://doi.org/10.1016/j.agee.2009.11.013
Parkpian P, Leong ST, Laortanakul P, Juntaramitree J (2002) An environmentally sound method for disposal of both ash and sludge wastes by mixing with soil: a case study of Bangkok Plain. Environ Monit Assess 74:27-43. https://doi.org/10.1023/A:1013850620819
Parr JF, Hornick SB (1992) Agricultural use of organic amendments: A historical perspective. Am J Altern Agric 7(4):181-189. https://doi.org/10.1017/ S0889189300004781
Punshon T, Adriano DC, Weber JT (2002) Restoration of drastically eroded land using coal fly ash and poultry biosolid. Sci Total Environ 296:209-225. https://doi.org/ 10.1016/S0048-9697(02)00128-6
Romanos D, Nemer N, Khairalla Y, Abi Saab MT (2019) Assessing the quality of sewage sludge as an agricultural soil amendment in Mediterranean habitats. Int J Recycl Org Waste Agric https://doi.org/10.1007/s40093-019-00310-x
Rosolem CA, Sgariboldi T, Arroyo-Garcia R, Calonego JC (2010) Potassium leaching as affected by soil texture and residual fertilization in tropical soils. Comm Soil Sci Plant Anal 41(16): 1934-1943. https://doi.org/10.1080/ 00103624.2010.495804
Saldaña MI, Gómez-Álvarez R, Rivera-Cruz MDC, Álvarez-Solís JD, Pat-Fernández JM, Ortiz-García CF (2014) The influence of organic fertilizers on the chemical properties of soil and the production of Alpinia purpurata. Cienc Investig Agrar 41(2): 215-224. http://dx.doi.org/10. 7764/rcia.v41i2.1334
Sarkar A, Singh A, Agrawal SB (2012) Utilization of fly ash as soil amendments in agricultural fields on North-Eastern gangetic plains of India: potential benefits and risks assessments. Bull Natl Inst Ecol 23(1–2): 9–20. https://www.nieindia.org/Journal/index.php/niebull/article/view/150
Sasikala C, Ramana CV (1998) Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv Microb Physiol
39:339–377. https://doi.org/10.1016/S0065-2911(08) 60020-X
Schutter ME, Fuhrmann JJ (2001) Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates. Soil Biol Biochem 33(14):1947-1958. https://doi.org/10.1016/S0038-0717 (01)00123-7
Scotti R, Bonanomi G, Scelza R, Zoina A, Rao MA (2015) Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr 15:333-352. http://dx.doi.org/10.4067/S0718-95162015005000031Singh JS, Pandey VCh, Singh DP (2011) Efficient soil microorganisms, A new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3-4):339-353. https://doi.org/10. 1016/j.agee.2011.01.017
Singh A, Sarkar A, Agrawal SB (2012a) Assessing the potential impact of fly ash amendments on Indian paddy field with special emphasis on growth, yield, and grain quality of three rice cultivars. Environ Monit Assess 184:4799–814. https://doi.org/10.1007/s10661-011-2303-4
Singh S, Singh B, Mishra BK, Pandey AK, Nain L (2012b) Microbes in agrowaste management for sustainable agriculture. In: Satyanarayana T, Johri B, Anil P (eds) Microorganisms in sustainable agriculture and biotechnology, Springer, Dordrecht, pp 127-151. https://doi.org/10.1007/978-94-007-2214-9_8
Singh D, Prabha R, Renu S, Sahu PK, Singh V (2019) Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising. Int J Recycl Org Waste Agric https://doi.org/10.1007/s40093-019-0243-0
Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2): 126-139. https://doi.org/10.1065/espr2002. 12.142
Turner RE, Rabalais NN, Justic D, Dortch Q (2003) Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64:297–317. https://doi.org/10.1023/ A:1024960007569
Wezel A, Casagrande M, Celette F (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34(1):1–20. https://doi.org/10.1007/s13593-013-0180-7
Wong JWC, Jiang RF, Su DC (1996) Boron availability in ash-sludge mixture and its uptake by corn seedlings (Zea mays L). Soil Sci 161(3):182-1. https://doi.org/10.1097/ 00010694-199603000-00004
Wong JWC, Lai KM (1996) Effect of an artificial soil mix from coal fly ash and sewage sludge on soil microbial activity. Biol Fert Soils 23(4): 420-424. https://doi.org/ 10.1007/BF00335916
Yamada K, Xu HL (2001) Properties and applications of an organic fertilizer inoculated with effective microorganisms. J Crop Prod 3:255-268. https://doi.org/ 10.1300/J144v03n01_21
Yunusa IAM, Loganathan P, Nissanka SP, Manoharan V, Burchett MD, Skilbeck CG, Eamus D (2012) Application of coal fly ash in agriculture: A strategic perspective. Crit Rev Env Sci Tec 42(6): 559-600. https://doi.org/10.1080/10643389.2010.520236
| ||
آمار تعداد مشاهده مقاله: 1,031 تعداد دریافت فایل اصل مقاله: 442 |