تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,366 |
تعداد دریافت فایل اصل مقاله | 54,843,979 |
Fixed point results for Su-type contractive mappings with an application | ||
Journal of Linear and Topological Algebra | ||
مقاله 4، دوره 09، شماره 01، خرداد 2020، صفحه 53-65 اصل مقاله (146.54 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
A. Ali1؛ H. Işık* 2؛ F. Uddin1؛ M. Arshad1 | ||
1Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan | ||
2Department of Mathematics, Faculty of Science and Arts, Mus Alparslan University, Mus 49250, Turkey | ||
چکیده | ||
In this paper, we introduce the concept of Su-type contractive mapping and establish fixed point theorems for such mappings in the setting of ordered extended partial $b$-metric space. We also develop an application for Fredholm type integral equations to validate our main result and a non-trivial example is given to elucidate our work. | ||
کلیدواژهها | ||
Altering distance function؛ Su-type contraction؛ extended partial $b$-metric space؛ integral equation | ||
مراجع | ||
[1] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl. 2011, 2011:508730. [2] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012, 2012:204. [3] M. Arshad, M. Abbas, A. Hussain, N. Hussain, Generalized dynamic process for generalized (f,L)almost F-contraction with applications, J. Nonlinear Sci. Appl. 9 (2016), 1702-1715. [4] H. Aydi, E. Karapınar, C. Vetro, On Ekeland’s variational principle in partial metric spaces, Appl. Math. Inf. Sci. 9 (1) (2015), 257-262. [5] I. Beg, A. R. Butt, Common fixed point and coincidence point of generalized contractions in ordered metric spaces, Fixed Point Theory Appl. 2012, 2012:229. [6] L. B. Ciric, M. Abbas, R. Saadati, N. Hussain, Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput. 217 (12) (2011), 5784-5789. [7] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat. 28 (4) (2014), 715-722. [8] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. [9] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena. 46 (1998), 263-276. [10] D. Gopal, M. Abbas, D. K. Patel, C. Vetro, Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci. 36 (3) (2016), 957-970. [11] R. Gubran, M. Imdad, Results on coincidence and common fixed points for (ψ,φ)g-generalized weakly contractive mappings in ordered metric spaces, Mathematics. 2016, 4:68. [12] N. Hussain, H. Isık, M. Abbas, Common fixed point results of generalized almost rational contraction mappings with an application, J. Nonlinear Sci. Appl. 9 (2016), 2273-2288. [13] N. Hussain, P. Salimi, Suzuki–Wardowski type fixed point theorems for α-GF-contractions, Taiwan. J. Math. 18 (6) (2014), 1879-1895. [14] N. Hussain, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl. 62 (2011), 1677-1684. [15] H. Isık, Solvability to coupled systems of functional equations via fixed point theory, TWMS J. App. Eng. Math. 8 (1a) (2018), 230-237. [16] H. Isık, M. Imdad, D. Turkoglu, N. Hussain, Generalized Meir-Keeler type ψ-contractive mappings and applications to common solution of integral equations, International Journal of Analysis and Applications. 13 (2) (2017), 185-197. [17] H. Isık, C. Ionescu, New type of multivalued contractions with related results and applications, U.P.B. Sci. Bull. Ser. A. 80 (2) (2018), 13-22. [18] H. Isık, D. Turkoglu, Common fixed points for (ψ,α,β)-weakly contractive mappings in generalized metric spaces, Fixed Point Theory Appl. 2013, 2013:131. [19] H. Isık, D. Turkoglu, Some fixed point theorems in ordered partial metric spaces, Journal of Inequalities and Special Functions. 4 (2) (2013), 13-18. [20] T. Kamran, M. Samreen, Q. UL Ain, A generalization of b-metric space and some fixed point theorems, Mathematics. 2017, 5:19. [21] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society. 30 (1) (1984), 1-9. [22] D. Klim, D. Wardowski, Fixed points of dynamic processes of set-valued F-contractions and application to functional equations, Fixed Point Theory Appl. 2015, 2015:22. [23] A. Latif, M. Abbas, A. Hussain, Coincidence best proximity point of Fg-weak contractive mappings in partially ordered metric spaces, J. Nonlinear Sci. Appl. 9 (5) (2016), 2448-2457. [24] S. G. Matthews, Partial metric topology, N. Y. Acad. Sci. 728 (1994), 183-197. [25] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl. 2013, 2013:562. [26] V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized Wardowski type fixed point theorems via α-admissible FG-contractions in b-metric spaces, Acta Math. Sci. 36 (5) (2016), 1445-1456. [27] V. Parvaneh, Z. Kadelburg, Extended partial b-metric spaces and some fixed point results, Filomat. 32 (8) (2018), 2837-2850. [28] M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat. 27 (2013), 1259-1268. [29] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math. 11 (2014), 703-711. [30] S. Shukla, S. Radenovic, Z. Kadelburg, Some fixed point theorems for ordered F-generalized contractions in 0-f-orbitally complete partial metric spaces, Theory Appl. Math. Comput. Sci. 4 (1) (2014), 87-98. [31] Y. Su, Contraction mapping principle with generalized altering distance function in ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2014, 2014:227. [32] N. Van Dung, V. T. Le Hang, A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam J. Math. 4 (43) (2015), 743-753. [33] F. Vetro, F-contractions of Hardy-Rogers type and application to multistage decision processes, Nonlinear Anal. Model. Control. 21 (4) (2016), 531-546. [34] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, 2012:94. [35] D. Wardowski, N. Van Dung, Fixed points of F-weak contractions on complete metric space, Demonstr. Math. XLVII (1) (2014), 146-155. | ||
آمار تعداد مشاهده مقاله: 1,746 تعداد دریافت فایل اصل مقاله: 316 |