- Lynch AS, Robertson GT. Bacterial and fungal biofilm infections. Annu. Rev. Med.. 2008; 18:
59:415-28. 2. El-Azizi MA, Starks SE, hardori N. Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. Journal of applied microbiology. 2004; 96(5):1067-73. 3. Shakibaie MR. Bacterial biofilm and its clinical implications. Annals of Microbiology and Research. 2018; 2: 2(1). 4. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, jelleberg S. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology. 2016;14(9): 563. 5. arn S , Duan J, Jenkinson IR. Book review: Role of biofilms in bioremediation. Frontiers in Environmental Science. 2017; 15: 5:22. 6. Ramos JL, Marqués S, van Dillewijn P, Espinosa-Urgel M, Segura A, Duque E, rell T, Ramos-González MI, Bursakov S, Roca A, Solano J. Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in biotechnology. 2011; 29(12): 641-7. 7. Chorom M, Hosseini SS. Bioremediation of Crude Oil-Polluted Soil by Sewage Sludge (Symposium 3.5. 2 Risk Assessment and Risk Based Remediation, < Special Issue> International Symposium: Soil Degradation Control, Remediation, and Reclamation, Tokyo Metropolitan University Symposium Series No. 2, 2010). Pedologist. 2011; 54(3): 294-301. 8. ebria DY, hodadadi A, Ganjidoust H, Badkoubi A, Amoozegar MA. Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental Science & Technology. 2009; 6(3):435-42. 9. Demeter MA, Lemire J, Yue G, Ceri H, Turner RJ. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation. Frontiers in microbiology. 2015; 4(6):936. 10. Tremaroli , acchi Suzzi C, Fedi S, Ceri H, annoni D, Turner RJ. Tolerance of Pseudomonas pseudoalcaligenes F707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm-and planktonic-grown cells. FEMS microbiology ecology. 2010;74(2): 291-301. 11. hang Y, Wang F, hu X, eng J, hao , Jiang X. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation. Bioresource technology. 2015; 193: 274-80. 12. hoei NS, Andreolli M, Lampis S, allini G, Turner RJ. A comparison of the response of two Burkholderia fungorum strains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons. Canadian journal of microbiology. 2016; 62(10): 851-60. 13. Halan B, Schmid A, Buehler . Real-time solvent tolerance analysis of Pseudomonas sp. strain LB120ΔC catalytic biofilms. Applied Environmental Microbiology, 2011; 77(5): 1563 -1571. 14. ingaro A, Nicolaou SA, Papoutsakis ET. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing. Trends in biotechnology. 2013; 31(11): 643-53. 15. Mandal A , Sarma PM, Singh B, Jeyaseelan CP, Channashettar A, Lal B, Datta J. Bioremediation: an environment friendly sustainable biotechnological solution for remediation of petroleum hydrocarbon contaminated waste. ARPN Journal of Science and Technology. 2012; 2(8): 1-2. 16. Seo JS, eum YS, Li X. Bacterial degradation of aromatic compounds. International journal of environmental research and public health. 2009 Jan;6(1):278-309. 17. O Toole GA. Microtiter dish biofilm formation assay. Journal of isualized Experiments, 2011; 30(47):e2437. 18. Rahman S, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource technology. 2002; 85(3): 257-261. 19. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of molecular biology. 1961; 3(2):208-IN1. 20. Nie M, Nie H, He M, Lin Y, Wang L, Jin P, hang S. Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale. Journal of environmental management. 2016;173: 34-40. 21. Weber , Delben J, Bromage TG, Duarte S. Comparison of SEM and PSEM imaging techniques with respect to Streptococcus mutans biofilm topography. FEMS microbiology letters. 2014; 350(2): 175-179. 22. im E , Ahn IS, LW L, ML S. Enhanced In-situ Mobilization and Biodegradation of Phenanthrens from Soil by a Solvent/Surfactant System. Journal of microbiology and biotechnology. 2001; 11(4): 716-719. 23. Moody JD, Freeman JP, Doerge DR, Cerniglia CE. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied Environmental Microbiology, 2001; 67(4): 1476-83. 24. ahng H, Nam . Molecular characteristics of Pseudomonas rhodesiae strain 1 in response to phenanthrene. 2002. 25. Xiong , Pang , Wang B, Ji X, Liu Y, Yang G, Dong C, Chen J, Lucia L. Biomechanical Pulping of Poplar with Crude Enzyme Secreted from Trametes sp. lg-9. BioResources. 2018; 13(2): 3420-8. 26. Nelson P. Index to EPA test methods. United States Environmental Protection Agency, Region I; 2003. 27. Wasi S, Tabrez S, Ahmad M. Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environmental monitoring and assessment. 2013; 185(10): 8147-55. 28. De ievit TR. uorum sensing in Pseudomonas aeruginosa biofilms. Environmental microbiology. 2009; 11(2): 279-88. 29. Ha DG, O Toole GA. c‐di‐GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbial Biofilms. 2015; 7: 301-317. 30. Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future microbiology. 2010; 5(11): 1663-1674. 31. Bjarnsholt T. The role of bacterial biofilms in chronic infections. Apmis. 2013; 121:1-58. 32. Rasamiravaka T, Labtani , Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed research international. 2015. 33. Emtiazi G, Shakarami H, Nahvi I, Mirdamadian SH. Utilization of petroleum hydrocarbons by Pseudomonas sp. and transformed E. coli. African Journal of Biotechnology. 2005 ;4(2):172-6. 34. Pazarlioğlu N , Telefoncu A. Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry. 2005; 40(5):1807-14. 35. Radhakrishnan M , Sugumaran E. Efficacy of sugarcane bagasse to produce bacterial biofilm in water for fish culture. Journal of Ecobiotechnology. 2010. 36. Frankel ML, Bhuiyan TI, eksha A, Demeter MA, Layzell DB, Helleur RJ, Hill JM, Turner RJ. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresource technology. 2016; 216: 352-361. 37. Accinelli C, Saccà ML, Mencarelli M, icari A. Application of bioplastic moving bed biofilm carriers for the removal of synthetic pollutants from wastewater. Bioresource technology. 2012; 120:180-186. 38. Sun D, Hale L, Crowley D. Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biology and fertility of soils. 2016; 52(4): 515-522. 39. Ming J, Wang , Yoza BA, Liang J, Guo H, Li J, Guo S, Chen C. Bioreactor performance using biochar and its effect on aerobic granulation. Bioresource Technology. 2020; 300: 122620. 40. Sun D, Hale L, Crowley D. Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biology and fertility of soils. 2016; 52(4): 515-522. 41. Horemans B, Albers P, Springael D. The biofilm concept from a bioremediation perspective.2015; 23-40 42. Demeter MA, Lemire JA, Turner RJ, Harrison JJ. Biofilm Survival Strategies in Polluted Environments. Biofilms in Bioremediation: Current Research and Emerging Technologies. 2016; 15: 43-56. 43. Chandra R, Chowdhary P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science: Processes & Impacts. 2015; 17(2): 326-42. 44. Arunkumar T, Alex Anand D, Narendrakumar G. Production and partial purification of laccase from Pseudomonas aeruginosa ADN04. Journal of Pure & Applied Microbiology. 2014; 8 (2): 727-731. 45. Strong PJ, Claus H. Laccase: a review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology. 2011; 41(4): 373-434. 46. Han MJ, Choi HT, Song HG. Degradation of phenanthrene by Trametes versicolor and its laccase. The Journal of Microbiology. 2004; 42(2): 94-8. 47. Di Lorenzo A, arcamonti M, Parascandola P, ignola R, Bernardi A, Sacceddu P, Sisto R, de Alteriis E. Characterization and performance of a toluene-degrading biofilm developed on pumice stones. Microbial Cell Factories. 2005; 4(1):4. 48. Liu J, Chen S, Ding J, Xiao Y, Han H, hong G. Sugarcane bagasse as support for immobilization of Bacillus pumilus H -2 and its use in bioremediation of mesotrione-contaminated soils. Applied microbiology and biotechnology. 2015; 99(24): 10839-51. 49. hang H, Tang J, Wang L, Liu J, Gurav RG, Sun . A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. Journal of Environmental Sciences. 2016; 47:7-13. 50. Lerch T , Chenu C, Dignac MF, Barriuso E, Mariotti A. Biofilm vs. Planktonic Lifestyle: consequences for Pesticide 2, 4-D metabolism by Cupriavidus necator JMP134. Frontiers in microbiology. 2017; 23: 8:904. 51. Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. Environmental pollution. 2005; 133(1): 71-84. 52. Decho AW. Microbial biofilms in intertidal systems: an overview. Continental shelf research. 2000; 20(10-11): 1257-73.
|