تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,364 |
تعداد دریافت فایل اصل مقاله | 54,843,974 |
A new reproducing kernel method for solving Volterra integro-dierential equations | ||
Theory of Approximation and Applications | ||
دوره 13، شماره 2، اسفند 2019، صفحه 1-17 | ||
نوع مقاله: Research Articles | ||
نویسنده | ||
Razieh Ketabchi* | ||
Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Esfahan, Iran | ||
چکیده | ||
This paper is concerned with a technique for solving Volterra integro-dierential equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained. The analytical solution is represented in the form of series. An iterative method is given to obtain the approximate solution. The convergence analysis is established theoretically. The applicability of the iterative method is demonstrated by testing some various examples. | ||
کلیدواژهها | ||
Reproducing kernel method؛ integro-differential equations؛ Gram-Schmidt orthogonalization process | ||
آمار تعداد مشاهده مقاله: 116 |