بررسی ارتباط ناهمگنی فواصل پتروفیزیکی سنگ مفزان و کم شدگی سطح تماس نفت - آب سازند سروک میدان سیوند، فلیچ فارس

ماهورگ فرودا، ممدوح زمان کمالی، علی سلگی، پوران نظریان سامانی و علی صنوجوری

(1) گروه زمین شناسی سازمان ملی هماهنگی و تحقیقات اقتصادی زمین‌شناسی، تهران، ایران
(2) پژوهشگاه صنعت نفت، تهران، ایران
alisenobar@yahoo.com

(5) شرکت نفت فلات قاره ایران، تهران، ایران، پست الکترونیک:

دریافت: 97/9/27/پایه 97/9/27
ارائه اصلاح شده: 97/9/27
تاریخ قبول: 97/9/27

هکیده

تعیین عمق سطح تماس سیالات و عوامل تأثیرگذار در کم شدگی آن در کاهش ریسک خطره و طرح‌های تعمیر ای در میدان از اهمیت پژاتی برخوردار می‌باشد. در مطالعه حاضر سطح تماس نفت-آب در تمامی جاهای میان‌سدن با استفاده از نمودارهای پتروفیزیکی تعیین و جهت تایید عمق مذکور از نمودارهای شار سنجی (RFT) کمک کرده شد. با تریم تحقیق‌های معمول سطح نفت و همچنین نشان نشیه‌های تطبیقی چا در جهات مختلف میدان، تمامی سطح تماس نفت-آب به خوبی نمایش داده شد. میزان این کم شدگی در حدود 0.8 درجه و به سمت زیر میدان می‌باشد. خواص پتروفیزیکی سنگ مذکور سروک (بخش میرشفی) از جمله تداخل و نفوذپذیری به کمک تکنیک‌های زیرین آماری در کل حجم مذکور توزیع و مدل گردید. وضعیت بهتر خواص مذکور در بخش غربی میدان باعث کاهش ضخامت زون تدريجی نفت و آب و تعمیم سطح تماس نفت-آب در این ناحیه شده است.

واژه‌های کلیدی: سطح تماس سیالات، نمودارهای پتروفیزیکی، تداخل، نفوذپذیری، زمین‌شناسی پتروفیزیکی

1- مقدمه

همیلتون می‌باشد (2007). بعنوان مثال برای محاسبات تداخلی، دقت تر با این تئوری می‌خز و بصورت عمومی و براساس نوع سیال تقسیم

شیمیایی عمق سطح تماس سیالات، سطح تماس غاز-آب (G.W.C), 
سطح تماس نفت-آب (G.O.C), 
سطح تماس غاز-نفت (O.W.G), 
در محاسبات حجمی مخزن و محاسبات دقت پتروفیزیکی بسیار حائز

Zemin Shnass Zolotnikov-Sial 10 (1363) Shmure 1
سیالاتی‌ای که بسطاً از ال‌وی‌ای و سولف‌دار قرار دارند که اغلب مقدار تخلخل آن‌ها در محدوده ۱۲ دقیقه است (فیلترنگ و همکاران ۲۰۱۴). پیش‌بینی این انحراف‌ها در سطوح سیالات مخزونی به عوامل مختلفی نسبت داده شده است که معمولاً محدود ترین آن عوامل ابعاد از گفتن جهت ماحصل اشباع آب بر اساس فشار مویی (capillary pressure) است. (Stenger et al. ۲۰۰۱; Pelissier et al. ۱۹۸۰; Dias et al. ۲۰۰۹; Bath ۱۹۷۲) 

در (دیسنسا ۲۰۰۱) از همکاری‌های فیزیکی سنگ مخزون، ۲۰۰۵، گرگیان و رضاپرست (۲۰۰۷) تغییرزمانی مخزون به عناوین مثال کیل خورشود (2000) (Estrada & Mantilla) در از همکاری‌های مختلفی یافته‌های مختلفی مخزون (2005). 

۱۶- میانه شناسی سطح‌گیر

میدان‌های سیبری (C) از ۴۲ کیلومتری شمال‌غربی تا بیشتر سیری در خلیج فارس واقع شده است و حدوداً در ۱۰۰ کیلومتری از خط ساحلی آنان قرار گرفته است (تصویر ۲). ساختار سیری می‌بیند در سال ۶۷ میلیون سال قبل. هزینه‌های مهار و توسط شرکت سایر ساختارش خشک و اکتشاف آن در محل اولیه تکمیل گردید. این ساختارها به‌طور یک طاق منحنی تصویر می‌باشد. 

طول آن حدود ۱۷۵ کیلومتر و عرض آن ۶ کیلومتر و مساحتی معادل ۹۵ کیلومتر مربع یا دارای می‌باشد. اولین لحظه، که اکتشافی این میدان، جه (۱) از طریق آن به دست آمد که در سال ۱۹۷۳ حفاری و در افق میانی به نفوذ برخوردار می‌باشد. (Hajikazemi ۱۹۹۹). 

در این میدان بخش فوقانی سازند سرورهای بخش‌های فیزیکی در دارای خصوصیات مخزونی می‌باشد. (Gyson ۲۰۰۳; Hajikazemi ۲۰۰۳; et al. ۲۰۱۲) تحلیل و ترکیب‌های میانگین این بخش به ترتیب ۲۲ درصد و ۴۰ میلی‌دریسی می‌باشد. میان‌فایت در میدان مورد مطالعه دارای شاخه تغییری از ۸ تا ۵۲ درصد است که به کمک نقشه‌های سی‌وی‌ای بسیار ۳ نشان می‌دهد که در ناحیه شمالی میدان سیری C بسیاری میان‌فایت در دارای بخش‌های فیزیکی است و در قسمت جنوب غربی، نارنجی می‌باشد.

۱۷- تعیین سطح تماس نفت-آب

با استفاده از نفوذ‌های پتروفیزیکی مقاومت و تخلخل، میزان اشباع آب به تفکیک‌های قرار در میدان ماحصله و در هر چاپ، (SW) تولید نفت-آب سطح تماس نفت-آب، (Zinsner & Pellerin ۲۰۰۷).
عمقی که در آن مقدار اشباع آب به میزان قابل توجهی افزایش می‌یابد (700 m به عوامل سطح‌ماس عقب‌مانده - آب در نظر گرفته شده است، جدول 2 و تصویر 2)، به نظر می‌رسد عملکرد سطح‌ماس نفت - آب، از آزمایشات فشار سازنده (RFT) در جهان‌های دارای اطلاعات فشار سنگی نیاز کمکی گرفته شده است، همانطور که در تصویر 5 مشاهده می‌گردد در چاه E9 در عمق 2967 متری (5875 فوتی) کرایان فشار سازنده دچار شکست می‌گردد که نشان دهنده نیوپاسیون نوع سیال در این عمق و تأثیر عملکرد سطح‌ماس نفت - آب تعبیه‌شده در این چاه با استفاده از نمودارهای پتروفیزیکی می‌باشد.

جدول 1- ضخامت بخش میشرف در چاه‌های مختلف میدان سیوند (Gyson 2003)

<table>
<thead>
<tr>
<th>Well name</th>
<th>Mishrif Thickness(m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>34.17</td>
</tr>
<tr>
<td>E10</td>
<td>30.01</td>
</tr>
<tr>
<td>E2</td>
<td>31.35</td>
</tr>
<tr>
<td>E3</td>
<td>38.12</td>
</tr>
<tr>
<td>E4</td>
<td>33.36</td>
</tr>
<tr>
<td>E5</td>
<td>35.90</td>
</tr>
<tr>
<td>E6</td>
<td>37.64</td>
</tr>
<tr>
<td>E7</td>
<td>37.66</td>
</tr>
<tr>
<td>E8</td>
<td>33.09</td>
</tr>
<tr>
<td>E9</td>
<td>28.31</td>
</tr>
<tr>
<td>F1</td>
<td>40.30</td>
</tr>
<tr>
<td>F10</td>
<td>52.09</td>
</tr>
<tr>
<td>F11</td>
<td>40.46</td>
</tr>
<tr>
<td>F12</td>
<td>36.00</td>
</tr>
<tr>
<td>F13</td>
<td>43.50</td>
</tr>
<tr>
<td>F14</td>
<td>41.91</td>
</tr>
<tr>
<td>F2</td>
<td>42.64</td>
</tr>
<tr>
<td>F3</td>
<td>40.25</td>
</tr>
<tr>
<td>F4</td>
<td>40.25</td>
</tr>
<tr>
<td>F5</td>
<td>37.42</td>
</tr>
<tr>
<td>F6</td>
<td>34.07</td>
</tr>
<tr>
<td>F7</td>
<td>37.08</td>
</tr>
<tr>
<td>F8</td>
<td>43.50</td>
</tr>
<tr>
<td>F9</td>
<td>42.42</td>
</tr>
<tr>
<td>SIC-1</td>
<td>38.69</td>
</tr>
</tbody>
</table>

پس از محاسبه عمق سطح‌ماس نفت - آب در هر یک از چاه‌های میدان مورد مطالعه جهت بررسی روند تغییرات عمق سطح‌ماس، نفکه هم از ارتفاع سطح‌ماس نفت - آب بر روی نفکه عمقی رأس میشرف بهره گرفته می‌شود (تصویر 6)، بر این اساس مشخص گردید که تبادل سطح‌ماس نفت - آب در میدان به سمت غرب میدان می‌باشد. بدنی معنی که عمق سطح‌ماس نفت - آب در مخزن میشرف از شرق به غرب افزایش می‌یابد.

تغییرات فواصل پتروفیزیکی سلگ مغان
چنان سطح‌ماس ماهیلی که ناشی از تغییرات جاتی تراوی و تخلخل زمین شناسی زلودتکنیک سال 10 (1393) شماره 1
49
جدول 2 عمق سطح تماس نفت-آب در چهار های میدان سیوند:

<table>
<thead>
<tr>
<th>Well Name</th>
<th>OWC MD [m]</th>
<th>OWC TVDSS [m]</th>
<th>Sw @ OWC [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC-1</td>
<td>2418</td>
<td>-2405</td>
<td>70</td>
</tr>
<tr>
<td>E1</td>
<td>2428</td>
<td>-2404</td>
<td>90</td>
</tr>
<tr>
<td>E2</td>
<td>2816</td>
<td>-2409</td>
<td>100</td>
</tr>
<tr>
<td>E3</td>
<td>3191</td>
<td>-2421</td>
<td>90</td>
</tr>
<tr>
<td>E4</td>
<td>2674</td>
<td>-2402</td>
<td>80</td>
</tr>
<tr>
<td>E5</td>
<td>2547</td>
<td>-2397</td>
<td>90</td>
</tr>
<tr>
<td>E6</td>
<td>2917</td>
<td>-2387</td>
<td>95</td>
</tr>
<tr>
<td>E7</td>
<td>2851</td>
<td>-2404</td>
<td>90</td>
</tr>
<tr>
<td>E8</td>
<td>3056</td>
<td>-2409</td>
<td>90</td>
</tr>
<tr>
<td>E9</td>
<td>2939</td>
<td>-2394.1</td>
<td>95</td>
</tr>
<tr>
<td>E10</td>
<td>2536</td>
<td>-2409.2</td>
<td>100</td>
</tr>
<tr>
<td>F1</td>
<td>2437</td>
<td>-2416</td>
<td>80</td>
</tr>
<tr>
<td>F2</td>
<td>2913</td>
<td>-2432</td>
<td>80</td>
</tr>
<tr>
<td>F3</td>
<td>2921</td>
<td>-2419</td>
<td>70</td>
</tr>
<tr>
<td>F4</td>
<td>2560</td>
<td>-2410</td>
<td>70</td>
</tr>
<tr>
<td>F5</td>
<td>2491</td>
<td>-2404</td>
<td>80</td>
</tr>
<tr>
<td>F6</td>
<td>2658</td>
<td>-2408</td>
<td>85</td>
</tr>
<tr>
<td>F7</td>
<td>2528</td>
<td>-2418</td>
<td>75</td>
</tr>
<tr>
<td>F8</td>
<td>3237</td>
<td>-2445</td>
<td>100</td>
</tr>
<tr>
<td>F9</td>
<td>2797</td>
<td>-2425</td>
<td>75</td>
</tr>
<tr>
<td>F10</td>
<td>3393</td>
<td>-2458</td>
<td>100</td>
</tr>
<tr>
<td>F11</td>
<td>2606</td>
<td>-2431</td>
<td>100</td>
</tr>
<tr>
<td>F12</td>
<td>2968</td>
<td>-2437</td>
<td>100</td>
</tr>
<tr>
<td>F13</td>
<td>3049</td>
<td>-2449</td>
<td>100</td>
</tr>
<tr>
<td>F14</td>
<td>2847</td>
<td>-2446</td>
<td>85</td>
</tr>
</tbody>
</table>

نتیجه‌گیری آب تا ارتفاع بیشتر در مخزن بالا آمد و عمق سطح تماس نفت

-آب کمتر خواهد بود (2007). (Lucia)

در این مطالعه با استفاده از مدل شبیه سازی زمین آماری، هتروژنتیکی

تصویر 3 - نقشه هم ضخامت ساندن سروک (پیکس میشیرف) در میدان مورد مطالعه.

تصویر 4 - عمق سطح تماس نفت-آب در چهار های میدان سیوند بر اساس نمره‌های پتروفیزیکی.
تصویر ۳- نمودار نمایشگری شرکتی مخزن می‌شريف در چاه E9 میدان سیوند. ایجاد شکست در گرادیان فشاری در عمق ۷۶۵۵ فوتی زیر سطح دریا نشان دهنده تغییر نوع سیال و عمق سطح تماس در چاه می‌باشد.

تصویر ۴- نقشه هم ارزش سطح تماس نفت - آب ترسیم شده بر روی نقشه UGC مخزن می‌شريف میدان سیوند.
سفید، کمالی، نظری سامی، مصیری: بررسی ارتباط ناهماهنگی خواص پتروفیزیکی سنگ مخزن و کج شدگی سطح نما نفت-اب سازند سروک.

شده می‌تواند بی‌توجهی مقدار تخلخل لایه‌های درشت‌تر نماید. شده‌ها و توزیع فضاهای پتروفیزیکی دیگر مخزن به طور دقیق به تصویر کشیده شد. مهم‌ترین خاصیت شبه سازی زمین آماری این است که می‌تواند بی‌توجهی‌های مجموعه‌ای از‌آنها را تولید می‌کند که اندازه‌ای از حالت‌های ممکن را شامل می‌شوند. این تکنیک می‌تواند تعداد بسیار زیادی از تنش‌های توزیع هر پارامتر پتروفیزیکی را در مخزن تلقی کند. که همگی شباهت داشته باشند. آن شباهت‌ها به جای زمین آماری همان‌طور که بندها و این تکنیک را نشان می‌دهند. 

7-مدل سازی لفظی شکل

داده‌ها تخلخل حاصل از تفسیر پتروفیزیکی لایه‌های هر چاپ، پس از درشت نمایی در داخل گرده‌ها و تنها سازی مورد آنالیز واریوگرافی قرار گرفتند. پارامترهای آنالیز واریوگرام (دامت، جهت و اثر قطعهای) بعنوان پارامترهای پایه‌ای از جهت ساخت مدل شبیه‌سازی مورد استفاده قرار گرفت. در مطالعه حاضر از مدل شبیه‌سازی GSY سازی جهت مدلهای پارامتر تخلخل در زون مشخص استفاده گردید (تصویر 7 و 8). جهت کنترل توزیع تخلخل در مدل ساخته‌شده.

تصویر 7-مدل شبیه سازی شده جهت توزیع تخلخل در زون مشخص در منطقه جنوب شرق - شمال غرب.

زمین شناسی پتروفیزیک سال 10(1393) شماره 1

52
تصویر ۸- مدل سه بعدی شبیه سازی شده ی توزیع تخلخل در زون میشیرف

تصویر ۹- مقایسه ی بین هیستوگرام داده های تخلخل درشت نماي شده (Upscaling) و مدل ساخته شده چهت کنترل كیفی مرحله مدلسازی تخلخل.
تصویر 10- نمودار نفوذپذیری در مقایسه تخلخل در مخزن میشریف که از آنالیز مغز سه جهات میدان سیوند بدست آمده است.

تصویر 11- مدل شبیه‌سازی شده توزیع نفوذپذیری در زون میشریف در مقطع جنوب شرق- شمال غرب.
تصویر ۱۲ مدل سه بعدی شیب سازی شده ی توزیع بروز وری در زون میشیریف.

تصویر ۱۳ انحراف سطح تماس نفت یا آب در آثار تغییر خصوصیات پتروفیزیکی سنگ مخزن میشیریف در میدان سیوند؛ بخش شمال غربی بدیل داشتن تخلخل و تراوی پیش دریای شمار مؤثیرگی کمر و در نتیجه زون تدریجی کوچکتر بوده و سطح تماس عمیق تر است.
8- تکه‌کشی کندال

از شرکت نفت ایران که داده‌های این مطالعه را در اختیار قرار داده است، تشکر و قدردانی می‌گردد.

مراجع

هجی‌کاظمی، ا.، پور، س. و ارازی، ا.، 1386. مطالعه زمین‌شناسی سازندگان دریای ایران، نسج و صدا در منطقه نفت سیری سیوند. شرکت نفت فلات قاره ایران، پردازش مطالعات اکتشافی خلیج فارس، 33 ص.

فلاندن، د.، شیرویه، م. ، سریال، م. ، صنایع لیموکشی، ع، 1384. مطالعه حیدریونتیک و حیدروشیمی سازندگان اسپاری در رویاندازی دریاچه. شرکت ملی نفت خوزستان، ش، 129 ص.

فی، س. و ارازی، ا.، 1396. مطالعه وضعیت حیدروتیباکی در سازندگان آساسی در رویاندازی دریاچه. شرکت ملی نفت خوزستان، ش، 129 ص.

گرگانی، م. و پوری، د.، 1378. کاربرد داده‌های فیزیکی در تصحیح سطح تاسیسات حیدروتیباکی، نسج و صدا از نظر جنوب ایران. شرکت ملی نفت خوزستان، ش، 129 ص.

میرجاوه، م.، 1377. زمین‌شناسی نفت جنوبی (بند جنوبی)، سازمان زمین شناسی نفت، ش، 129 ص.


