| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,607,835 |
| تعداد دریافت فایل اصل مقاله | 56,289,475 |
Detecting Huntington Patient Using Chaotic Features of Gait Time Series | ||
| Journal of Advances in Computer Research | ||
| مقاله 3، دوره 11، شماره 1 - شماره پیاپی 39، اردیبهشت 2020، صفحه 27-32 اصل مقاله (604.74 K) | ||
| نوع مقاله: Original Manuscript | ||
| نویسندگان | ||
| Armin Allahverdy* 1؛ Mahboobeh Golchin2 | ||
| 1Radiology Department, Allied Faculty, Mazandaran University of Medical Sciences, Sari, Iran | ||
| 2Department of Mathematics, Tehran North Branch, Islamic Azad University, Tehran, Iran | ||
| چکیده | ||
| Huntington's disease (HD) is a congenital, progressive, neurodegenerative disorder characterized by cognitive, motor, and psychological disorders. Clinical diagnosis of HD relies on the manifestation of movement abnormalities. In this study, we introduce a mathematical method for HD detection using step spacing. We used 16 walking signals as control and 20 walking signals as HD. We took a step back from the walking distance signals. Then, using fractal dimensions and statistical features, the control was classified and HD and 97.22% accuracy were obtained. | ||
| کلیدواژهها | ||
| HD؛ Gait signal؛ Stride time interval؛ Fractal dimension؛ Statistical features | ||
|
آمار تعداد مشاهده مقاله: 121 تعداد دریافت فایل اصل مقاله: 63 |
||