

101

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 11, No. 1, February 2020), Pages: 101-111
www.jacr.iausari.ac.ir

3Ebrahimnejad Ali ,2Homayun Motameni ,1d MarzooniHamidreza Hasanneja

1) Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran

2) Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

3) Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

Hamidreza.hasannejad.m@gmail.com; motameni@iausari.ac.ir; a.ebrahimnejad@qaemiau.ac.ir

Received: 2019/08/29; Accepted: 2020/09/16

Abstract

An architecture shows to what extent a system meets the needs of the

stakeholders, so designing a desired architecture produces very high-quality

software tailored to the needs of the stakeholders. Thus, finding a software

architecture model is quite critical, and to achieve this goal, a suitable architecture

style model must be used. In this regard, attempts are made to deploy the behavior

of the candidate software styles as well as the stakeholders’ desired model as

functions graphs, so that the desired architecture style model graphs, which meet the

maximum needs of the stakeholders, are selected by comparison. Fuzzy Cubic Spline

is used in the structure of the proposed algorithm, which requires turning qualitative

data into quantitative data. To evaluate the proposed approach, a controlled

experiment is also conducted. The proposed approach is compared with an analytic

hierarchy process-based approach (AHP), TOPSIS and PTFG (Prioritizing using

tensor and fuzzy graphs) in the experiment. The results analysis demonstrates that

our approach needs to less time complexity and is much easier to use and highly

accurate.

Keywords: Software Architecture Style, Non-Functional Requirements, Fuzzy Curve Fitting, Fuzzy

Spline

1. Introduction

 Since not so long ago, discussions have revolved around technology and its effect on

life, to the extent that life without technology is seen unacceptable by humans. Although

mankind has kept up with the speed of technology, technology has in some cases turned

into a disruptor or destroyer causing havoc on the positive quality of life. All-round

improvement in the quality of life in today's advanced societies is seen as a main issue.

Given the considerable advances in information technology and the use of various

software programs, one of the existing methods for improving the quality of life is this

very technology, to the extent that it has brought sciences as different as architecture

and construction, meteorology and crisis management, financial issues, factories and

industries control system, vehicles’ central control system, medical sciences and more

under its direct control, bringing us to this conclusion that life without information

technology will be impossible .

 Given the special importance of software programs in human life, the science of

software engineering is an essential need [1], which should be incorporated throughout

http://jacr.iausari.ac.ir/?_action=article&au=19879&_au=Hossein++Nezamabadi-pour

Selecting an Architecture Style Using … H. Hasannejad Marzooni, H. Motameni, A. Ebrahimnejad

102

the life cycle of producing a software program including analysis, architecture

development, design, implementation, verification and maintenance phases [2]. Modern

societies also depend crucially on complex software systems which provide help in

maintaining and satisfying stakeholders' goals and their inevitably changing needs.

Therefore, the existence of a software program in the form of software architecture is a

necessity in order to meet such demands [3].

 Providing a complex, large-scale, distributed software engineering environment, the

ability to quickly evaluate and improve software engineering practices can be a key

differentiator of the market. Practices that shorten the development cycle, cost-

effectively improve quality, and align the software with customer needs, leaving a direct

impact on the business value provided by the company [4]. Therefore, software

architecture is a basis for any kind of software system and a necessary mechanism for

raising the software quality and gaining access to quality attributes. The most important

factor in ensuring the quality of software program is its architectural sustainability [5];

throughout the life cycle of software production, its architecture endures. The

architecture should be designed so that it leads to maintaining customer value in the

short and long terms, thus bringing more architectural technical debt (DBT) to the

software structure.

 Several methods have been proposed for better designing of software architecture,

some of which will be referred to below. This paper presents a formal linear

programming optimization model for the Non-Functional Requirements (NFRs)

framework with regard to operationalization selection. Affleck et al. used a formal

linear programming optimization model for the NFRs framework with regard to the

choice of operation [6]. Decisions about software architecture depend on system

failures. The quality attributes of a software system are, to a large extent, determined by

the decisions taken early in the development process. Best practices in software

engineering recommend the identification of important quality attributes during the

requirements elicitation process, and the specification of software architectures so as to

satisfy these requirements.

There are several frameworks and middleware which result in savings in software

implementation and production process. Some of them have been variously presented

and used for certain systems and their capabilities have been proven [7]. The accurate

selection of a set of such frameworks can prevent applying unwelcome changes when

completing the desirable architecture known as software architecture style

This study was conducted in attempt to present a style-based software architecture

model. In order to achieve that objective, we explored how to select the style of

financial software architecture in a relatively small company as a case study involving

three stakeholders: manager, computer engineer and accountant. In this case study, the

appropriate software architecture style was facilitated through the proposed algorithm

from among Remote Procedure Call (RPC), Data Flow (DF), Data Center (DC), Virtual

Machine (VM), Object Oriented (OO) and Layered (L) styles. A few of the qualitative

parameters of such styles crucial in this system have been obtained through

questionnaire estimation completed by experts. This study proposed a new algorithm

based on mathematical argument, from which the style with the greatest consistency

was selected with the NFRs of the stakeholders. The main advantage of this method

over its counterparts lies in its direct calculation independent of the number of candidate

styles or NFRs. Therefore, the most robust results ever will be obtained. The paper has

been arranged as follows. Each one of the studied methods are briefly described in

Journal of Advances in Computer Research (Vol. 11, No. 1, February 2020) 101-111

103

Section 3. The methods are implemented on the data of the studied problem

simultaneously. The outcome and results of software architecture style selection by

means of Majority Voting are presented. Furthermore, the algorithms are compared with

each other in terms of the time required for running and the results obtained from

running each one algorithm. The details will be described later in this paper.

2. Related Works

 One of the main subjects in designing a software architecture based on styles

selection is the appropriate style. The term architecture style was first introduced by

Perry and Wolf in 1992 [8]. In 1994, Garlan and Shaw [9] introduced software

architecture styles and drew comparisons between them by providing several examples.

Different research projects have presented different methods for the analysis and

selection of styles.

 Bosch et al. presented an algorithm called arch designer, in which the prioritization

and assignment of quality attribute weights have been used as criteria in selecting the

most appropriate software architecture model or style [10]. In this algorithm, when the

number of candidate styles and that of NFRs increases, the size of matrix grows. As a

result, the number of calculations increases and leads to a reduction in efficiency.

Furthermore, Hoseini Jabali et al. [11] used AHP algorithm based on the density of data

for selecting a software architecture style or model, in which the implementation has not

been conducted and the results have not been tabulated. Wang et al. [12] also presented

an algorithm based on AHP for style selection. Chun Yong Chong et al. [3] offered a

fuzzy AHP-based algorithm in an effort to identify quality attributes and rank them

based on their priorities. Kim et al. [13] proposed a Lightweight Technique for Software

Architecture Evaluation (LiVASAE) based on arithmetic mean and AHP. AHP has a

hierarchical one-way structure. This means that when ranking and selecting the best

choice, the criteria list is assumed to remain unchanged. If the choice is to affect the

criteria list, for example, by introducing new attributes of a candidate style, the output

of calculations and as a prior results and ranking of the selected appropriate style will no

longer be valid, so the problem needs to be reconsidered from the scratch. Considering

such complexity, time and costly process of AHP-based algorithms, their applicability

in real use is under question.

 The correlation coefficient is another method that has been drawn upon in various

papers for evaluating architectural models or styles. However, the problem with all

these methods may involve the long distance and parallelism of the attributes. For

example, the correlation coefficient between DM attributes and a candidate style may be

around 1, but each of DM attributes can be 100 times of the style's attributes [14-17].

 Fiondella et al. [18] used Uncertainties in model parameters for importance

assessment of a software system. Using methods based on the investigation of a model

can also guide us in selecting architecture styles. In order to reach that goal, the optimal

model is investigated for each style and the best one is selected. Thus, we can find a

very large transfer matrix for each style. Cyrille Jegourel et al. [19] proposed an

algorithm based on a statistical estimation method for preventing the instability in the

transfer matrix and ultimately reducing its size. In addition, SAT-based learning model

has been proposed as a preventive method by Franjo Ivančić et al. [20] in order to avoid

abnormalities. These methods also reduce the size of the transfer matrix. Thus, there are

various algorithms for selecting an appropriate architecture style. There are various

Selecting an Architecture Style Using … H. Hasannejad Marzooni, H. Motameni, A. Ebrahimnejad

104

ways to check and improve the quality of software. For example, formal methods have

become the recommended methodology in critical software engineering. In formal

confirmation, a system must be identified with a specific formula such as Petri Net

networks, automata, and process algebras that require formal expertise and may be

complicated especially with large systems. Mkaouar et al. [21] proposed a model for a

real-time work model using the LNT language, describing how to use it to integrate a

formal confirmation phase into an AADL-based development process. It can be

compared with the proposed algorithm. The reason for comparing both of these methods

is the use of statistical parameters.

 Misaghian et al. [22] used an algorithm abbreviated as PTFG and achieved the same

degree of correction with less calculation demand as sophisticated Multi-Criteria

Decision Making (MCDM) algorithm of technique of ordered preference by similarity

to ideal solution (TOPSIS), which evaluates the alternatives based on cost (relative

distance from the positive ideal alternative) and benefit (relative distance from the

negative ideal alternative) [23]. Again, changing the number of architecture style s

and/or the number of NFRs in TOPSIS and PTFR will oblige total recalculation and

there would be no guarantee for achieving the same prioritization ranking, nor there

would be results comparable against the case of lowest number of Styles/NFRs, just as

mentioned in the case of AHP. The result of strength/weakness analysis of introduced

alternative methods have been summarized in Table 1.

Table 1 - SWOT table of alternative algorithms

Algorithm Related Works Weakness Strength

AHP-based

 Chun [3]

 Kim [13]

 Hoseini jabali [11]

 High time

complexity

 High Sensitivity

to criteria list

 High memory

need

 Easy to design

and apply

Matrix-based

 Bosch [10]

Modeling

&

Formal Method

 Jegourel [19]

 Ivančić [20]

 Mkaouar [21]

 Misaghian[22]

 Costly in

designing stage

 Low time

complexity

This research presents a new algorithm based on mathematical reasoning and a curve

fitting method, which selects a style able to meet stakeholders' NFRs with minimum

amount of money spent within the shortest possible time. This introduces a simple, yet

effective, method for selecting an optimum software architecture style, meeting the

stakeholders’ requirements with the least operation cost. It is itself an easy-to-design

and -implement method (similar to AHP- and matrix-based methods) having low time

complexity (like Modelling and Formal Methods) with low implementation cost, while

achieving results comparable with what is obtained using complex methods. It will be

described in more details below.

 This algorithm consists of two methods: cubic spline and fuzzy logic. In its

description, we first need to briefly introduce the fuzzy cubic spline and the Delphi

fitting method. Then, we will present the algorithm and calculate the results.

Journal of Advances in Computer Research (Vol. 11, No. 1, February 2020) 101-111

105

3. Proposed algorithm

 The main purpose of this study is to select a software architecture style from among

the candidates using the fuzzy cubic spline fitting method. The core of the newly

proposed algorithm consists of two methods of cubic spline fitting and fuzzy logic.

Therefore, we need to initially introduce cubic spline fitting and fuzzy Delphi prior to

providing a description of the proposed algorithm.

3.1 Cubic spline

 In curve fitting methods, higher-degree polynomials might be adopted to achieve

more accurate results in problems. High-degree polynomials not only increase the

number of computational operations, but also render the findings uncertain due to

potential rounding errors. The piecewise technique is employed to keep the degree of

interpolation polynomials low and to achieve the desired accuracy in approximation

problems.

 By partition of interval [a, b] into sub-intervals [xi−1, xi] and approximating the

function through low-degree polynomials in each sub-interval, we can enhance the

accuracy while preventing the oscillating nature of high-degree polynomials. One of

these methods involves a three-point, equidistance, piecewise, linear interpolation

known as cubic spline, which follows Equation (1).

𝑆(𝑥) =
1

6ℎ
(𝑥𝑖 − 𝑥)[(𝑥𝑖 − 𝑥)2 − ℎ2]𝑀𝑖−1 +

1

6ℎ
(𝑥 − 𝑥𝑖−1)[(𝑥 − 𝑥𝑖−1)2 − ℎ2]𝑀𝑖 +

1

ℎ
[(𝑥𝑖 − 𝑥)𝑓𝑖−1 + (𝑥 − 𝑥𝑖−1)𝑓𝑖] , 1 ≤ 𝑖 ≤ n (1)

Each coefficient of (Mi) in Equation (1) is calculated through Equation (2).

𝑀𝑖−1 + 4𝑀𝑖 + 𝑀𝑖+1 =
6

ℎ2
[𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1] , 1 ≤ 𝑖 ≤ 𝑛 − 1

I. 𝑀0 = 𝑀𝑛 = 0

II. 𝑀0 = 𝑀𝑛 , 𝑀1 = 𝑀𝑛+1 , 𝑓0 = 𝑓𝑛 , 𝑓1 = 𝑓𝑛+1

III. 2𝑀0 + 𝑀1 =
6

ℎ
[

𝑓1−𝑓0

ℎ
− 𝑓0] , 𝑀𝑛−1 + 2𝑀𝑛 =

6

ℎ
[𝑓𝑛 −

𝑓𝑛−𝑓𝑛−1

ℎ
] (2)

3.2 Fuzzy Delphi

 Delphi is a robust process based on a group communication structure adopted in cases

where incomplete, unreliable knowledge is available with the aim of achieving

consensus among experts. In the classical Delphi method, the expert opinions are

expressed in the form of definite numbers, whereas experts use their mental

competencies to express opinions, indicating the possibility of uncertainty prevailing in

this situation. The probability of uncertainty is compatible with fuzzy sets. Hence, it is

better to obtain data in the form of natural language from experts and analyze it using

fuzzy sets. The advantage of the fuzzy Delphi method is the integration of each opinion

to reach a group agreement. Given the broad application and ease of calculation in the

triangular method, the fuzzy Delphi calculation has been demonstrated in Equation (3).

𝑎𝑖𝑗 = (c𝑖𝑗, , 𝑔𝑖𝑗)
c𝑖𝑗 = min(𝑏𝑖𝑗𝑘) , 𝑘 = 1, … . . , 𝑛

𝑑𝑖𝑗 = (𝛱 𝑖𝑗𝑘)
1

𝑛, 𝑘 = 1,…. . , 𝑛
𝑔𝑖𝑗 = 𝑚𝑎x(𝑏𝑖𝑗𝑘) , 𝑘 = 1, … . . , 𝑛 (3)

Selecting an Architecture Style Using … H. Hasannejad Marzooni, H. Motameni, A. Ebrahimnejad

106

 Equation (3) shows the relative importance of parameter i over parameter j from the

viewpoint of Kth expert, c as such, c𝑖𝑗 and 𝑔𝑖𝑗 represent the lower and upper bounds of

the respondent opinions and the geometric means of the respondents' opinions,

respectively. In fact, this tool helps convert the expert opinions from the questionnaire

into a triangular fuzzy number.

3.3 Overview of newly proposed algorithm

 In this research, architecture styles will be employed to design software architecture.

A suitable architecture is expected to fulfill the requirements of stakeholders to some

extent. Therefore, selecting the appropriate style to achieve a good architecture can

affect the quality of the software. The newly proposed algorithm consists of four steps

and is able to select the appropriate style. This research intends to design a style-based

architecture for financial software used in a small company. As previously mentioned,

there are three stakeholders in this company with a very high degree of importance, as

well as six architecture style candidates for seven non-functional requirements (quality

attribute) to be examined. Figure 1 illustrates a schematic view of the new algorithm

for designing a suitable architecture in order to maximize response to these qualitative

attributes.

Figure 1. Software architecture style selection algorithm using fuzzy cubic spline

Step One: First, the non-functional requirement of stakeholders is specified. A fuzzy

index will be assigned to each pair of more closely related requirements used as fuzzy

xis in the computational equations.

Step two: At this stage, according to the non-functional requirement, a questionnaire is

prepared and presented to stakeholders to complete. There is also another questionnaire

about candidate styles handed to software engineering experts to complete. After

receiving the completed questionnaires and applying the fuzzy Delphi method, the

questionnaires each of the requirements vector table as well as the styles table will be

calculated fuzzily.

START

END

Explore and identify the requirements of stakeholders and indexing them

Compare the results and estimate the distance of each style from the requirements

of shareholders (selecting the closest style to the desired requirements)

Apply cubing spline fitting on vector requirements and candidate styles
individually and convert them into fuzzy relationships

Calculate the amount of requirements as well as the amount of supply by candidate

styles and fuzzification of results

Journal of Advances in Computer Research (Vol. 11, No. 1, February 2020) 101-111

107

Step three: In this step, the cubic spline fitting is calculated for the candidate styles and

the requirements vector. In this procedure, The xis are defuzzified as the value of the

non-functional requirement index while the f(𝑥𝑖)s is its value (i.e. geometric mean of

that requirement by experts in the styles and stakeholders in the DM). After calculating

the cubic spline fitting in different partition intervals (between each of the two

requirements) using fuzzy relationships, we will achieve a fuzzy cubic spline fitting.

Table 2 displays an example of calculating a fuzzy spline fitting for a VM style.

Table 2. Calculate of Fuzzy Cubic Spline of VM

Calculation of the expected fuzzy value
Partition

Dependent

parameter

pair

Fuzzy index

parameter

pair

(𝐱𝟏, 𝐱𝟐, 𝐱𝟑)

(𝑦1, 𝑦2, 𝑦3)
= −.0509(𝑥1, 𝑥2, 𝑥3)3 + 2.0512(𝑥1, 𝑥2, 𝑥3)1

+ 13.9225
= (−97.0289, −127.6089, −113.3484)

0p

(0,1,2) Performance-

Security

(𝑦1, 𝑦2, 𝑦3)
= .0833(𝑥1, 𝑥2, 𝑥3)3 + .9700(𝑥1, 𝑥2, 𝑥3)2

− 3.6624(𝑥1, 𝑥2, 𝑥3)1 + 12.6158
= (−77.113, −105.2077, −138.8594)

1p

(2,3,4) Security-

Modification

(𝑦1, 𝑦2, 𝑦3)
= .09212(𝑥1, 𝑥2, 𝑥3)3 − .0305(𝑥1, 𝑥2, 𝑥3)2

+ .0957(𝑥1, 𝑥2, 𝑥3)1 + 8.15
= (256.2890 ,313.628 ,379.1967)

2p

(4,5,6) Modification-

Reusability

(𝑦1, 𝑦2, 𝑦3)
= .0707(𝑥1, 𝑥2, 𝑥3)3 + .5222(𝑥1, 𝑥2, 𝑥3)2

+ 1.0791𝑥1, 𝑥2, 𝑥3
1 + 8.9564

= (320.4158 , 381.2504 ,449.4924)
3p

(6,7,8)

Reusability-

Scalable

(𝑦1 , 𝑦2, 𝑦3) = −.1389(𝑥1, 𝑥2, 𝑥3)3

− .322(𝑥1, 𝑥2, 𝑥3)2

+ .2995(𝑥1, 𝑥2, 𝑥3)1 + 8.4644
= (−431.5962
− 528.2806 , −638.11)

4p

(8,9,10) Scalable-

Portability

(𝑦1, 𝑦2 , 𝑦3)
= −111(𝑥1, 𝑥2, 𝑥3)3 + 1.3396(𝑥1, 𝑥2, 𝑥3)2

− 3.7498(𝑥1, 𝑥2, 𝑥3)1 + 10.9196
= (−83.6, −118.5424, −160.7956)

5p

(10,11,12) Portability-

Reliability

According to Table 2, we insert the value of each (𝑥1, 𝑥2, 𝑥3) in the fuzzy equation in

that partition so as to obtain(𝑦1, 𝑦2, 𝑦3).
Step four: This is the last step of the algorithm. Thus, in both the DM fuzzy spline

fitting and the fuzzy spline fitting, each of the candidate styles is obtained after the

fuzzified 𝑥𝑖s and f(𝑥𝑖) is placed . After calculating (y1, y2, y3) in each partition, the

value of distance between each of the candidate styles and DM is calculated using

Equation (4) [24].

𝐷
2,

1

2

(𝐴̃, 𝐵̃) = √
1

6
[∑ (𝑏𝑚 − 𝑎𝑚)23

𝑚=1 + (𝑏2 − 𝑎2)2 + ∑ (𝑏𝑚−𝑎𝑚)(𝑏𝑚+1−𝑎𝑚+1)𝑚∈{1,2}]

(4)

Finally, the style with greatest similarity (least numerical distance) with DM is

selected.

Selecting an Architecture Style Using … H. Hasannejad Marzooni, H. Motameni, A. Ebrahimnejad

108

In fact, this distance is calculated in each partition and the mean of these distances in

different partitions is the final distance of each style and DM as shown in Table 3.

Table 3. Distance between DM and each Style

Partition Candidate

Styles DF VM L OO RPC DC

0p 115.24 154.03 156.52 27.33 33.98 115.24

1p 26.03 17.95 15.43 2.15 6.25 18.75

2p 139.39 241.38 295.57 108.37 204.79 394.42

3p 521.26 441.84 573.52 109.23 412.31 486.391

4p 191.49 254.54 83.19 138.29 290.64 18.48

5p 2.46 3.94 7.87 7.44 8.48 25.3

Distance between

each style and the

desirable model 165.9783 185.6133 188.6833 65.46833 159.4083 176.4302

Ranking of each style

in fulfilling the

requirements of

stakeholders 3 5 6 1 2 4

According to Table 3, OO is the best style for the optimal model with the greatest

responsiveness to the desired requirements of stakeholders. Moreover, RPC and DF are

ranked second and third, respectively.

4. Analysis and review of results

In this research, we first examined and summarized the requirements of the

stakeholders. Then, these requirements as well as the candidate styles are modeled using

the cubic spline fitting method. In the end, each of these styles is compared against DM

and the best style is selected. In order to evaluate the newly proposed algorithm and

compare the output results against those of its counterparts from AHP, TOPSIS and

PTFG algorithms, we used a computer equipped with an Intel Core i5 processor with

2.3 GHz of processing capacity, 500 GBs of Hard Disk, 4.0 GBs of RAM and an

installed copy of Microsoft Windows 7 so as to evaluate and compare performance

through MATLAB as the programming environment.

Table 2. The Priority ranking of selection of architecture styles by different algorithms

Algorithm Priority of Selection Algorithm Mean Run

Time (m seconds)

AHP OO,RPC,DF,DC,L,VM 2850.8

TOPSIS RPC,OO,DF,DC,VM,L 1990.5

PTFG OO,RPC,DC,DF,VM,L 1465.1

Proposed Algorithm OO,RPC,DF,DC,VM,L 1212.9

 The results are shown in Table 4, indicating the superiority of our proposed algorithm

over all of its three counterparts in the sense of lower processing time requirement (in

accordance with our prior expectation). Moreover, the results suggest that the priority

ranking resulted from AHP and PTFG are identical. The reason behind the substitution

of the first and second ranked architecture style s in TOPSIS can be the high similarity

of these two styles (OO and RPC). Thus, the NFR weighting schemes need to be

performed with special care, just as the case for the AHP algorithm. To compare the

Journal of Advances in Computer Research (Vol. 11, No. 1, February 2020) 101-111

109

proposed algorithm with the previous algorithms, the number of NFRs can be increased

and the response time of each algorithm can be examined. The graphs have been

displayed in Figure 2.

Figure 2. The required time for running each method according to the Number of NFRs tested

According to Figure 2 and Table 4, as well as the results, the proposed algorithm of

this paper runs faster than other methods for small number of NFRs and the PIFG is

ranked 2. Moreover, the results show that as the number of NFRs increases, the newly

proposed algorithm will be the fastest while AHP will be the slowest method of all.

5. Conclusion and Future Works

This paper adopted an algorithm based on Fuzzy logic methods and Curve fitting

together to select a software architecture style as a new step taken in software

architecture. Based on Table 4 and Figure 2, we can conclude that: Compared to the

other algorithms, the first and foremost advantage of the proposed algorithm comes

from its lower time complexity. Secondly, it enables the selection of appropriate styles

in a way that if new styles are suggested as the candidate, the new will be compared to

the last selected style and the proposed algorithm selects the most appropriate one,

while providing a superior qualification compared to the ASCC method. The last

advantage is related to the size of the inputs. As the algorithm is an interpolation-based

method, with increase in NFRs, the accuracy of calculations increases, while

calculations volume does not grow. However, it is notable that with larger case studies

in size, increasing the number of NFRs, applying weight-based methods is preferred

because of its more efficient features compared to AHP, TOPSIS and PTFG algorithms.

While having the aforementioned advantages, the main disadvantage of the proposed

algorithm (a common disadvantage in all algorithms of Table 4, is that after adding a

Selecting an Architecture Style Using … H. Hasannejad Marzooni, H. Motameni, A. Ebrahimnejad

110

new NFR, the aforementioned results are no more valid and the algorithm needs to be

rerun before the new results become usable.

In future studies, researchers can analyze the polymorphic styles and apply the

proposed algorithm to select the software architecture styles on them. Moreover, using

this algorithm, one can create new polymorphic styles or modify them more easily to

make them more efficient depending on the requirements of the stakeholders. However,

other interpolation methods such as B-Spline and Fuzzy B-Spline could be examined

and appropriate styles may be selected accordingly.

References

[1] M. Salama, R. Bahsoon, Analysing and modelling runtime architectural stability for self-adaptive

software, Journal of Systems and Software, 133 (2017): 95-112.

[2] D.M. Phillips, T.A. Mazzuchi, Sh. Sarkani, An architecture system engineering and acquisition

approach for space system software resiliency, Information and Software Technology, 94 (2018):

150-164.

[3] C.Y. Chong, S.P. Lee, T.Ch. Ling, Prioritizing and fulfilling quality attributes for virtual lab

development through application of fuzzy analytic hierarchy process and software development

guidelines, Malaysian Journal of Computer Science, 27.1 (2014): 1-19. doi:

https://ejournal.um.edu.my/index.php /MJCS/article/view/6790

[4] E.V. Woodward, R. Bowers, V.S. Thio, K. Johnson, M. Srihari, C.J. Bracht, Agile methods for

software practice transformation, IBM Journal of Research and Development, 54.2 (2010): 3-1.

doi: 10.1147/JRD.2009. 2038749.

[5] T. Sharma, D. Spinellis, A survey on software smells, Journal of Systems and Software, 138

(2018): 158-173.

[6] A. Affleck, A. Krishna, A. Narasimaha, R. Achuthan, Non-Functional Requirements Framework:

A Mathematical Programming Approach, The Computer Journal, Vol. 58, Issue. 5, pp. 1122–

1139, 2015. doi:10.1093/comjnl/bxu027.

[7] G.D. Abowd, R. Allen, D. Garlan, Formalizing style to understand descriptions of software

architecture, ACM Transactions on Software Engineering and Methodology (TOSEM), 4.4

00190(1995): 319-364. doi: https://doi.org/10.1145/2 26241.226244.

[8] D.E. Perry, A.L. Wolf, Foundations for the Study of Software Architectures, ACM Software

Engineering Notes, 17.4 (1999): 40-52.

[9] D. Garlan, M. Shaw, An Introduction to Software Architecture, Advances in Software

Engineering and Knowledge Engineering, Series on Software Engineering and Knowledge

Engineering, World Scientific Publishing Company, 2 (1994): 1-39.

[10] J. Bosch, P. Bengtsson, R. Smedinga, Assessing Optimal Software Architecture Maintainability,

Fifth European Conference on Software Maintainability and Reengineering, 2000.

[11] F. Hoseini Jabali, S. M. Sharafi, K. Zamanifar, A Quantitative Algorithm to Select Software

Architecture by Tradeoff between Quality Attributes, Procedia Computer Science, 3 (2011):

1480-1484.

[12] Q. Wang, Zh. Yang, A method of selecting appropriate software architecture styles: Quality

Attributes and Analytic Hierarchy Process, University of Gothenburg/ Department of Computer

Science and Engineering, 2012.

[13] Ch. Kim, D. Lee, L. Ko, J. Baik, ALightweight Value-based Software Architecture Evaluation.

Eighth, ACIS International Conference on Software Engineering Artificial Intelligence,

Networking, and Parallel/ Distributed Computing, IEEE Xplore, (2007): 646-649. doi:

10.1109/SNPD.2007.507.

https://ejournal.um.edu.my/index.php%20/MJCS/article/view/6790
https://ieeexplore.ieee.org/author/37398818300
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
https://www.sciencedirect.com/science/journal/18770509

Journal of Advances in Computer Research (Vol. 11, No. 1, February 2020) 101-111

111

[14] H. Astudillo, Five Ontological Levels to Describe and Evaluate Software Architecture,

Department de Informatics, Universidad Technical Federico Santa Maria Avda, España1680,

Valparaiso, Chile, 2004.

[15] S. Babamir, M. Khabazian, Evaluation of qualitative requirement analysis in software

architecture, Mashhad, Iran: International conference of IT Knowledge, 2007.

[16] P. Clements, L. Bass, D. Garlan. J. Ivers, R. Little, R. Nord, J. Stafford, Documenting Software

Architectures: Views and Beyond, Addison Wesley, 2007.

[17] D. Garlan, K. J. Soo, Analyzing architectural styles with Alloy, In Workshop on the Role of

Software Architecture for Testing and Analysis (ROSATEA), 2006.

[18] L.N. Fiondella, S. Gokhale, Importance measures for modular software with uncertain

parameters, Software Testing, Verification & Reliability, 20.1 (2009): 63-85. doi: 10.1002/

stvr.420.

[19] C. Jegourel, A. Legay, S. Sedwards, Command-based importance sampling for statistical model

checking, Theoretical Computer Science, 649 (2016): 1-24.

[20] F. Ivančić, Z. Yang, M.K. Ganai, A. Gupta, P. Ashar, Efficient SAT-based bounded model

checking for software verificat-ion, Theoretical Computer Science, 404.3 (2008): 256-274.

[21] H. Mkaouar, B. Zalila, J. Hugues, M. Jmaiel, A formal approach to AADL model-based,

software engineering.International Journal on Software Tools for Technology Transfer, (2019):

1–29. doi: https:// doi.org/10.1007/s10009-019-00513-7.

[22] N. Misaghian, H. Motameni, M. Rabbani, Prioritizing interdependent software requirements

using tensor and fuzzy graph. Turkish Journal of Electrical Engineering & Computer Science,

27.4 (2019): 2697-2717. doi:10.3906/elk-1806-179.

[23] C.L. Hwang, K. Yoon, Methods for multiple attribute decision making, Multiple attribute

decision making. Springer, Berlin, Heidelberg, (1981): 58-191.

[24] A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri, B. Sadeghpour-Gildeh, Computing a fuzzy shortest

path in a network with mixed fuzzy arc lengths using α-cuts, Computers & Mathematics with

Applications 60.4 (2010): 989-1002.

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gokhale%2C+Swapna+S
file:///C:/Users/Vista%20Computer/Desktop/Desktop-Nahaii/hasan-nejad/3-6-99-Word/C.%20%20HYPERLINK%20%22https:/www.sciencedirect.com/science/article/pii/S030439751630396%206%22%20Jegourel
file:///C:/Users/Vista%20Computer/Desktop/Desktop-Nahaii/hasan-nejad/3-6-99-Word/A.%20%20HYPERLINK%20%22https:/www.sciencedirect.com/science/article/pii/S03043975163%2003966%22%20Legay
file:///C:/Users/Vista%20Computer/Desktop/Desktop-Nahaii/hasan-nejad/3-6-99-Word/S.%20%20HYPERLINK%20%22https:/www.sciencedirect.com/science/article/pii/S0304397516%20303966%22%20Sedwards
https://www.sciencedirect.com/science/journal/03043975
file:///C:/Users/PCs/AppData/Local/Temp/%20649
https://www.sciencedirect.com/science/article/pii/S0304397508002223
file:///D:/M.%20HYPERLINK%20%20%22https:/www.sciencedirect.com/science/article/pii/S030439750800%202223
https://www.sciencedirect.com/science/article/pii/S0304397508002223
file:///D:/P.%20%20HYPERLINK%20%22https:/www.sciencedirect.com/science/article/pii/S%200304397508002223%22%20Ashar
https://www.sciencedirect.com/science/journal/03043975

Selecting an Architecture Style Using … H. Hasannejad Marzooni, H. Motameni, A. Ebrahimnejad

112

