

57

Journal of Advances in Computer Research
Quarterly pISSN: 2345-606x eISSN: 2345-6078
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 11, No. 4, November 2020), Pages: 57-72
www.jacr.iausari.ac.ir

Static Task Allocation in Distributed Systems Using
Parallel Genetic Algorithm

 *Monireh Taheri Sarvtamin

Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran
mtaheri@iauk.ac.ir

Received: 2020/05/19; Accepted: 2020/10/26

Abstract
Over the past two decades, PC speeds have increased from a few instructions

per second to several million instructions per second. The tremendous speed of
today's networks as well as the increasing need for high-performance systems has
made researchers interested in parallel and distributed computing. The rapid
growth of distributed systems has led to a variety of problems. Task allocation is a
key process for distributed systems to achieve effective system efficiency, which,
except for a few cases, is an NP-complete problem. Finding an effective and efficient
method for this problem is still sought despite various methods used in studies.
Experiments and the results of previous research have shown that NP problems are
better solved by exploratory methods than other methods. This study used a parallel
genetic algorithm (PGA) to find a solution for proper task allocation to processors
in a distributed system. The task allocation policy, obtained using PGA, is much
faster than traditional genetic algorithms. The results showed that the proposed
algorithm can provide optimal or near-optimal allocations for problems of different
sizes. The proposed method also solved large- and medium-sized problems much
faster than traditional genetic algorithms and with super linear speedup.

Keywords: Distributed System, Task Allocation, Parallel Genetic Algorithm, Static Task Allocation

1. Introduction

Today, distributed systems are introduced as a powerful platform for running high-
efficiency parallel programs and as an alternative to massive parallel machines.
Distributed systems have a set of heterogeneous processors connected through a
communication network [1-4]. The efficiency of a parallel program divided into several
tasks simultaneously run on different system processors on a distributed system largely
depends on task allocation to system processors. If the allocation is not implemented
properly, system processors may wait for each other for most of their time instead of
doing useful calculations. Optimal allocation is an allocation that can minimize system
costs

A distributed system may have static or dynamic allocation policies according to its
allocation decision making time. The static task assignment assumes the information
about the task and the characteristics of the processor already available before the
execution of the task. Static mapping is used for various purposes. It can be used to plan
the execution of a set of tasks in the future. Dynamic mapping is done when tasks are
mapped online in real-time, for example, tasks are mapped when they arrive at
indefinite intervals.

Static Task Allocation in Distributed … M. Taheri Sarvtamin

58

In the general case, the task allocation problem in both cases is an NP-complete
problem. The key importance of this problem in efficiency has led many researchers to
examine it and introduce many methods for solving it [5-8]. The efficiency of these
systems highly require runtime (system cost) reduction and system reliability elevation
[9-11].

Various task allocation problem solutions are proposed [10, 12], generally divided
into two main classes of exact algorithms and heuristic methods. The graph theory,
state-space search [13-15] and mathematical programming [16-18] are used in
implementing exact algorithms .In these algorithms, time grows exponentially with the
size of the problem, so they are actually used for small problems, while suboptimal
solutions can be obtained in heuristic methods providing powerful and fast tools.

Various problems are successfully solved by genetic algorithms (GAs) [5-8]. Due to
recent advances in computer systems architecture, as well as the good ability and
significant achievements of PGAs, extensive research has been conducted on them [9-
12]. These algorithms have performed very well in high-complexity problems [13, 14],
which is why they are used in this study.

In this study, PGA was used to map a set of tasks to sources statically in
heterogeneous distributed computing environments to reduce the runtime. The results of
reducing the runtime in this problem using PGA compared to sequential genetic
algorithms as well as the results of evaluating the speedup and efficiency of this
algorithm over the sequential version are presented below. The results showed that by
encoding the problem as a chromosome, PGA could generate an optimal or near-
optimal task assignment, and the proposed method could achieve super linear speedup.
Experimental results showed that PGA has a better performance for the task allocation
problem even without parallel running than the standard (traditional) genetic algorithm,
the causes of which are discussed below. The major contributions of this study are listed
below:
1. With the advancement of science, exploratory methods can no longer solve complex

problems, necessitating the employment of meta-exploratory methods with better
and higher performance in solving problems. Therefore, this study used parallel
genetic algorithms, which are more powerful than standard genetic algorithms. In
addition to searching in parallel at multiple points in space, these algorithms
increase diversity in subpopulations, prevent premature convergence, and reduce
entanglement in local optimizations.

2. The increasing complexity of scientific computing in recent years has raised the
need to increase code execution speed, so if all the processor and system hardware
power is used, great success is achieved in reducing runtime and increasing code
speed. Due to advances in CPU manufacturing and multi-core processors, as well as
the advent of GPUs, this study has tried to use the potential power of multi-core
processors to execute the proposed algorithm in parallel, to achieve the desired
response in much less time.

This paper presents related previous works, task allocation problem definition, the
proposed method explanation, experimental design, experimental results, and
conclusions in sections 2 to 7, respectively.

Journal of Advances in Computer Research (Vol. 11, No. 4, November 2020) 57-72

59

2. Related works

New effective techniques are always sought for best possible solutions of intractable
task allocations problems in an acceptable computational time. The literature is full of
studies on the task allocation problem providing several methods [25, 3]. The issue
under investigation was first introduced by Stone [15]. Stone’s main work was to
develop the Task Interaction Graph (TIG) model for executive task description. In the
introduced model, each processor ran exactly one task at a time.

Aggarwal et al. provided an efficient way to allocate resources using hybrid planning
and optimization in a distributed system. To achieve smaller execution intervals with a
lower error rate probability, they used ant colony optimization and Round Robin
scheduling provided an effective scheduling solution and optimizing resource
management [27].

In an article titled “A survey of task allocation and load balancing in distributed
systems”, Jiang examined the general characteristics of distributed systems. He
examined studies on task allocation and load balancing in various aspects and discussed
future research paths [16].

In an article titled “A reformed task scheduling algorithm for heterogeneous
distributed systems with energy consumption constraints”, Hu et al. proposed a task
scheduling program to satisfy energy constraints in heterogeneous distribution systems
and minimize the scheduling time of parallel programs. According to the experimental
results, better planning length was achieve through the new algorithm in energy
consumption limitations compared to existing algorithms [29].

Akbari and Rashidi proposed a multifunctional scheduling algorithm based on
cuckoo optimization for the task allocation problem when compiling in heterogeneous
systems. They ensured that local optimization is avoided. Their proposed algorithm,
while allowing global search in the problem area to speed up global search
optimization, provides a relatively optimal timing with the least number of repetitions
[2].

Yadav et al. presented a heuristic method for optimal task allocation, to analyze the
cost of heterogeneous distributed computing systems. The proposed algorithm in this
study , used Communication Link Sum (CLS) for one by one task allocation to
processors , which reduces the Inter-Process Communication (IPC) and thus minimizes
system costs [17].

Hamed presented a GA seeking task allocation optimal solution in heterogeneous
distributed systems to balance the load assigned to each processor. Experimental results
indicated that the GA was more effective than conventional algorithms [18]. In a recent
study entitled “Designing a task allocation framework for distributed systems”,
Chaubey et al. tried to design a task allocator framework to implement different task
allocation algorithms. Using this task allocator framework, one can replace the task
allocation mechanism with a new mechanism when necessary [19].

In a study, Akbari used the TRIZ method to improve the genetic algorithm
performance and solved the problem of assigning and scheduling tasks in heterogeneous
distributed systems. In his proposed method, he has improved the genetic algorithm
performance by altering and manipulating genetic functions [20]. In another study,
Hosseini Shirvani used a shuffled genetic algorithm to schedule tasks in distributed
systems such as grids and cloud computing. This study used the Heterogeneous Earliest
Finish Time (HEFT) method to intelligently generate the initial population. The method

Static Task Allocation in Distributed … M. Taheri Sarvtamin

60

also uses a shuffled operator to take advantage of both exploration and extraction in
finding promising individuals in the search space. The results of the proposed method
were compared with HEFT and QGARAR, indicating that it has better performance in
terms of mean makespan[21].

In an article entitled “Heuristic algorithm for scheduling tasks in cloud computing
using hybrid particle swarm optimization and bat algorithms”, Barzegar et al.
developed a hybrid algorithm called PSOBat-Greedy to schedule tasks and provide
appropriate responses in cloud computing. Their proposed method has somewhat
increased the resource efficiency compared to the particle swarm optimization algorithm
and the bat algorithm [22].

In another study on task allocation in distributed systems, Neelakantan and Sreekanth
minimized task response time by transferring tasks from loaded computers to computers
under load using load balancing techniques. The present study balanced tasks among
computers on a distributed system because diffusion technique strength lies in all port
communication model and asynchronous implementation [1].

3. Problem definition

The problem in this study relates to an optimal static task allocation of a parallel
program on processors in a distributed system. A distributed system is made up of two
sets, the set of heterogeneous processors (P=P1, P2, …, Pm) interconnected by
communication lines, and the set of program tasks (T=t1, t2, …, tn) that together form a
common goal. The cost of executing an executable task varies across different
processors, and the execution costs are expressed as an n×m matrix called Execution
Cost Matrix (ECM). Similarly, a symmetric n×n matrix called Inter Task
Communication Cost Matrix (ITCCM) is used to show the connection cost between two
tasks.

Figure 1 shows a distributed system with different processors, Task Interaction Graph
(TIG), and execution cost and connection cost tables. Part (a) shows a parallel program
by a task interaction graph G (V,E). In the task interaction graph, vertices represent
tasks and edges represent relationships between tasks. In this graph, V defines the task
set and E the edges set. Each i ϵ V task has a certain processing load. Part (b) shows the
costs or the runtimes of three different processors with an ECM.

Part (c) shows the matrix of communication costs obtained from the TIG graph. In
short, there is a set of N tasks stating that a parallel program must execute on a
distributed system with M processors.

Figure 1. (a) Task interaction graph; (b) Execution cost matrix; (c) Communication cost matrix

Journal of Advances in Computer Research (Vol. 11, No. 4, November 2020) 57-72

61

3.1 Problem formulation

The formulation is a mathematical model for a static task allocation problem
involving two steps: (i) cost function formulation for representing the main purpose; (ii)
formulating some limitations or inequalities according to tasks needs and system
resources availability. To do that, X is a binary matrix of N×M corresponding to the
allocating N tasks to M processors so that:

0
1{ipX = (1)

If task i is assigned to processor p, Xip=1, otherwise, Xip=0.
Location limitation

Each task should only be allocated to one processor that executes completely and
without preemption. The following Equation must be followed for each task.

1ipp
X =å (2)

Cost function
According to Equation 3, task allocation to processors is defined as an X function as

follows:
: ()X T B such that X i k® = (3)

If the ith task is assigned to the kth processor.

A. Processor Execution Cost (PEC)

PEC of ti task on a Pk processor is determined by ecik, which is the total cost required

in the execution process to execute ti on that processor. The corresponding execution
cost of a tasked that cannot be executed on a particular processor is assumed infinite
(∞), and Equation 4 shows how to calculate the processor execution cost in an X task
allocation, for all tasks assigned to the processor k [23]:

1
()

m

K ik ik
i

PEC X ec x
=

= å (4)

B. Inter Processor Communication Cost (IPCC)

IPCC of ccij is calculated when data is transferred from one task to another due to the

relationship between tasks; and this cost is added to the calculations when the ti and tj
tasks are deployed on separate processors during the execution process. When two tasks
are executed on one processor, ccij=0; hence in an X task allocation, IPCC for the kth
processor k is calculated as follows [23]:

1
() ()

m m

K ij ik jb
i j i

IPCC X cc x x
= >

= åå (5)

Static Task Allocation in Distributed … M. Taheri Sarvtamin

62

In an X task allocation, PEC and IPCC for kth processor make up the total cost of the
kth processor [23]:

cos () () ()t k k kT X PEC X IPCC X= + (6)

and the system total cost is calculated as follows [23]:

cos cos
1

() ()
n

t t k
k

S x T X
=

= å (7)

C. System Cost Model

Taking into account system resource limitations, the task allocation for system costs

is formulated as follows [23]:

cosmin. ()tS X (8)

1
. . 1 1,2,3,...,

n

ik
k

s t X i m
=

= " =å (9)

{0,1} ,ikX i kÎ " (10)

In this model, the limitation is set to 9 to assign each task exactly to one processor,
and limitation 10 ensures that Xik is a decision variable.

4. Proposed Methods

The proposed methods in this paper is to use PGAs. PGAs are not just a parallel
version of the old sequential genetic algorithm. In fact, they reach the ideal goal of a
parallel algorithm with better behavior than that of the sum of its components. [13]
Several parameters justify this. First, PGAs are naturally parallel, because the
operations on the threads are independent. Besides, the entire population (panmixia) is
geographically structured to focus on competitively selecting among thread subsets,
which result in better algorithms. Higher efficiency and greater diversity further
reinforce the importance of research advances in PGAs. Figure 2 shows the pseudocode
of island genetic algorithms and Figure 3 shows the cell genetic algorithm.

Journal of Advances in Computer Research (Vol. 11, No. 4, November 2020) 57-72

63

Figure 2. Pseudo-code of a parallel island genetic algorithm with migration intervals of τ [24].

Figure 3. Pseudo-code of parallel cellular genetic algorithms[24].

4.1 Presenting the problem genotype

Finding a proper mapping between the genotype and solution of a problem is a key
elements in designing a PGA[9]. In the case of the PGA, each genotype corresponds to
a candidate solution to the problem, which represents each task allocation with a
genotype using the numerical vector with M elements, where position i refers to a
processor number that task i is allocated to: Genotype[i] =p, pϵ (1, 2, …, n).

Figure 4 shows a visual example of the genotype and refers to the allocation of five
tasks to three processors. For instance, Genotype[1]=2 indicates that task 1 is assigned
to processor 2, and so on.

Figure 4. An example of the problem genotype

Static Task Allocation in Distributed … M. Taheri Sarvtamin

64

4.2 Genetic algorithm operators

The selection process is done by the roulette wheel, and the most suitable individuals
have a higher chance than the weaker ones. A single-point, two-point, and uniform
crossover methods together form a crossover operator. Each of these methods is given a
different probability, and at each call to the crossover function, one of these three
methods is selected using the roulette wheel. A mutation operator is also used. Here, the
mutation mechanism switches the selective processor from the selected task to another
randomly selected processor.

 The condition for stopping is reaching a defined repetitions number. This number is
considered different for different problem sizes, but this number is chosen in such a way
that the algorithm becomes convergent and an answer is found. The replacement
method here is to create a temporary population of new individuals and old individuals,
then sort them according to fitness and in descending order, and then select the best
individuals from this new temporary population and replace the previous population.

The fitness function calculates the sum of the execution and communication costs for
a produced solution (individual).Table 1 shows the parallel genetic algorithm
parameters.

Table 1. Parallel genetic algorithm parameters

Parameters Value
Pcrossover 0.7
Pmutation 0.02
Population Size 100
Iterations 1000-8000

4.3 Island genetic algorithm parameters

Determining the parameters for the migration of individuals from one population to

another is necessary for an island model genetic algorithm (IGA). One-way circular
topology is used here. Ten percent of the best individuals in each population migrate
and replace the worst individuals in the destination population. The migration interval is
considered at 20.

4.4 Temporal complexity of genetic algorithms

Calculating the temporal complexity of a genetic algorithm depends on many factors,

including population size, genotype length, algorithm termination conditions,
population selection type, fitness function, crossover function, and mutation function. If
the algorithm termination condition is considered as a certain number of iterations, the
time complexity of the genetic algorithm can be written as follows:
O (G * (N * M * O (Fitness) + G * (N * Pc * O (Crossover) + G * (N * Pm * O
(Mutation))

Journal of Advances in Computer Research (Vol. 11, No. 4, November 2020) 57-72

65

Where
G: Generations Number
N: Population Size
Pc: Probability of Crossover
Pm: Probability of Mutation

Given the common options such as point mutation, single-point crossover, and roulette
wheel selection, the complexity of these functions is considered constant, and Pc and
Pm are also constant, so the complexity of the genetic algorithm is simplified as
follows:
 O (G * (N * M + N * M + N)) = O (GNM)
Space complexity is considered as O (N), considering that twice the population size is
needed to maintain the old and new populations, and N is the population size. In genetic
algorithm parallelism, the main population is divided into several subpopulations and
genetic operators are applied to them. The temporal complexity of the parallel genetic
algorithm can be considered as follows:
O ((GNM) / Np)

Where Np is the number of processors. The acceleration algorithm is obtained by
dividing the execution time of the genetic algorithm serially by its parallel execution
time.

5. Experimental design

The proposed method was executed using MATLAB R2012a software on a PC with
CPU=Core i3, 2.00GHz, RAM=4.00GB. Two system configurations were considered
for evaluation: a 4-computer distributed system and a 6-computer distributed system. In
addition, four random population sizes with values of N=8, 12, 16, and 20 were used.

5.1 Efficiency measure

According to a category introduced by Alba [25], the effectiveness of evolutionary

serial and parallel algorithms are assessed with “Single machine/Panmixia” and
“Orthodox” comparing methods. In the orthodox comparing method, a parallel
algorithm is run on m machines, and then the same algorithm is run on one machine,
then the results are compared. In the Panmixia comparing method, the results of running
the parallel algorithm and running the standard version of the same algorithm on one
machine are compared.

5.2 Paralleling with MATLAB parallel computing toolbox

The increasing complexity of scientific computing in recent years has raised the need

to increase code execution speed more than ever. Thus, MATLAB has provided a
parallel computing toolbox so that users can employ multiple processors and GPU to
increase the speed of their program execution and save time[26]. The parallel

Static Task Allocation in Distributed … M. Taheri Sarvtamin

66

computing toolbox allows users to process high-volume, time-consuming data using
multiprocessor systems, multi-core processors, GPUs, and computer networks.

MATLAB has also made it possible to use all the power of a desktop computer with
its parallel computing toolbox, allowing all processors of a multi-processor system and
multi-core processor cores to be used via MATLAB workers. MATLAB has also made
it possible to run parallel codes on a cluster of computers using MATLAB's distributed
computing server, by running the code that is written, troubleshot, and tested in parallel
on a multi-core desktop computer or multi-core system, on a cluster of computers.

5.3 Dataset

As there is generally no accepted standard basic dataset for evaluating task allocation

algorithms aimed at reducing system costs in distributed computing systems, in this
study we produced a range of similar samples that other researchers have used [27-29]
to test PGAs by simulation. A set of different parameters are used to make a large
simulation dataset that determines problem instances properties. The main parameters
are:

· Number of tasks in a TIG program (M)

· Number of processors in a distributed computing system (N)

· Costs of executing the program on different processors

· Costs of communication between tasks

In this study, the N value means the number of distributed computing system
processors between 4 and 6 variables. The number of M tasks varies by values of 8, 12,
16 and 20 to check the algorithm with different scales.

6. Experimental results

6.1 Performance evaluation of the proposed method based on orthodox comparison method

Based on the orthodox method, IGA and CGA were run in parallel on two processor
cores, then the same algorithms were run on one processor core and their runtime in
both cases was recorded to evaluate their performance. Table 2 shows the runtimes of
IGA and CGA for various problem sizes. Note that the results in part (a) show the table
for the distributed system with 4 computers and part (b) shows the table for the
distributed system with 6 computers.

Table 2. Problem runtime using different algorithms (in seconds). (a) Distributed system with 4

computers; (b) Distributed system with 6 computers

(M,N) TSIGA* TPIGA** TSCGA*** TPCGA****

(8,4) 0.92s 0.81s 1.99s 1.36s
(12,4) 1.19s 0.88s 2.13s 1.39s
(16,4) 3.71s 2.18s 11.18s 6.47s
(20,4) 28.89s 16.05s 63.59s 34.89s

(M,N) TSIGA TPIGA TSCGA TPCGA
(8,6) 12.28s 6.84s 42.4s 23.45s
(12,6) 13.43s 7.34s 44.86s 24.59s
(16,6) 27.03s 14.61s 63.05s 34.48s
(20,6) 28.11s 14.79s 64.08s 35.04s

Journal of Advances in Computer Research (Vol. 11, No. 4, November 2020) 57-72

67

*TSIGA: Runtime of island genetic algorithm on one processor core
**TPIGA: Runtime of island genetic algorithm on two processor cores in parallel
***TSCGA: Runtime of cellular genetic algorithm on one processor core
****TPCGA: Runtime of cellular genetic algorithm on two processor cores in parallel

As Table 2 shows, both IGA and CGA can solve the problem of static task allocation
to processors in distributed systems much faster than sequential genetic algorithms. The
speedup graphs of PGAs for different problem sizes is presented in Figure 5. As Figure
5 shows, PGAs speedup rate increases by problem size.

Figure 5. Speedup graph of island and cellular genetic algorithms (CGAs) for the problem of static

task allocation to processors by formal comparison method. (a) In a distributed system with 4
computers; (b) In a distributed system with 6 computers

As Figure 5 shows, the speedup rate of parallel genetic algorithms increases by the
number of tasks. Also, comparison of the two graphs (A and B) indicate that graph B, in
which the number of processors is considered more, has a higher speedup rate than
graph A. Therefore, increasing the size of the problem, including the tasks and
processors number, generally increases parallel genetic algorithms efficiency, and these
methods perform better for large and time-consuming problems.

Code and data transfer, as well as competition for resources between workers and the
operating system, can be attributed to the declining speedup rate and, of course,
efficiency in some experiments. Also, the low efficiency of PGAs in small-size
problems is justified by the fact that opening and closing the parallelization tool is time-
consuming, so PGAs are not recommended for small problems.

6.2 Evaluation of the proposed algorithm by single machine comparison method

In this experiment, genetics parallel algorithms were run on dual-core processors in
parallel using MATLAB parallel computing toolbox, and their results were compared
with the traditional (standard) genetic algorithm.

Table 3 shows the speedup and efficiency of PGAs for different problem sizes. Parts
(a) and (b) of Table 3 show the performance of island and CGAs in a distributed
computing system with 4 computers, respectively.

0/00

0/50

1/00

1/50

2/00

)٨،۶()١٢،۶()١۶،۶()٢٠،۴(

Sp
ee

du
p

Problem Size

Speedup chart

IGA Speedup CGA Speedup

0/00

0/50

1/00

1/50

2/00

)٨،۴()١٢،۴()١۶،۴()٢٠،۴(

Sp
ee

du
p

Problem size

Speedup chart

IGA Speedup CGA Speedup

Static Task Allocation in Distributed … M. Taheri Sarvtamin

68

Table 3. Runtime (in seconds), speedup and performance of PGAs compared to a static task allocation

problem solved a standard genetic algorithm in a distributed computer system with 4 computers; (a)
The island genetic algorithm; (b) The cellular genetic algorithm

(M,N) TGA
* TIGA

** Speedup Efficiency

(8,4) 0.53s 0.69s 0.76 0.38
(12,4) 0.56s 0.74s 0.76 0.38
(16,4) 9.63s 2.62s 3.67 1.83
(20,4) 57.14s 16.33s 3.49 1.75

(M,N) TGA TCGA
*** Speedup Efficiency

(8,4) 0.53s 1.39s 0.38 0.19
(12,4) 0.56s 1.42s 0.39 0.19
(16,4) 9.63s 6.4s 1.5 0.75
(20,4) 57.14s 34.61s 1.65 0.82

*GA: Genetic Algorithm
**IGA: Island Genetic Algorithm
***CGA: Cellular Genetic Algorithm

Table 3 results show that both island genetic algorithms in the single machine

comparison for large problems can achieve super-linear speedup. Experiments indicated
that standard genetic algorithms need more iterations than PGAs to achieve the answer
which increases their runtime. The reasons for the need of standard genetic algorithms
to iterations can be explained as follows: (1) PGAs are usually faster and less inclined to
finding suboptimal solutions; (2) Standard genetic algorithms are slow and rapidly lose
variation; (3) PGAs perform very well in many applications and evolve very rapidly.
Figure 6 shows the speedup rate of the two Parallel Island and CGAs for the problem
under consideration by the single-machine comparison method.

Figure 6. Speedup rate of PGAs for static task allocation problem by single machine comparison

method; (a) In a distributed system with 4 computers; (b) In a distributed system with 6 computers.

Figure 6 shows that IGA performs better than the CGA when using the single-
machine comparison method, and has been able to achieve super-linear speedup. IGA
increases diversity in its sub-islands because of migration implementation and helps to
find better solutions; in contrast, the CGA in each generation must apply a crossover
operator on each of its cells, and due to the high number of cells, each cell has to wait a
long time for its genetic operators to apply.

0

1

2

3

4

)٨�۴()١٢�۴()١۶�۴()٢٠�۴(

Sp
ee

du
p

Problem size

Speedup chart

IGA Speedup CGA Speedup

0

1

2

3

)٨�۶()١٢�۶()١۶�۶()٢٠�۶(

Sp
ee

du
p

Problem size

Speedup chart

IGA Speedup CGA Speedup

Journal of Advances in Computer Research (Vol. 11, No. 4, November 2020) 57-72

69

6.3. Comparison of the proposed method and PSOBat-Greedy method presented in
[22]

In another experiment, to compare the proposed method with the method presented in
[22], the number of tasks was increased to 50. The execution time of the methods was
compared and the results are presented in Figure 7. The proposed method was much
faster than the standard GA and the PSOBat-Greedy methods in solving the mentioned
problem.

Figure 7. Comparison of the proposed methods with the PSOBat-Greedy method presented in [22]

6.4 Behavior of PGAs as the number of MATLAB workers increases1

By default, the number of workers is set equal to the number of CPU cores when a
program is locally runs on one computer by MATLAB parallel computing toolbox.
However, the number of workers can also be set to more than the number of processor
cores up to 12. Another experiment increased the number of workers but kept the
number of processor cores constant at 2, and measured the runtime and speedup of
parallel algorithms for different samples. Algorithms efficiency was evaluated based on
orthodox comparison method. The interesting thing about this part is that with the
increase in the number of MATLAB workers without increasing the number of
processor cores, concurrence is actually being implemented, and it can be said that this
experiment examines the effect of concurrence on parallel genetic algorithms.

Figure 8 shows IGA and CGA efficiency and speedup graphs for the problem of
static task allocation to processors in a distributed system with 12 tasks and 4
computers. The horizontal axes of these two graphs indicate the number of MATLAB
workers and the vertical axes show the speedup rate.

1 In the discussion, the basis of the algorithm evaluation is the formal comparison method.

0

20

40

60

80

100

120

140

160

١ ۵٠ ١٠٠

R
un

 ti
m

e

Number of tasks

IGA

CGA

GA

PSOBat-Greedy

Static Task Allocation in Distributed … M. Taheri Sarvtamin

70

Figure 8. (A) Measuring speedup rate changes in IGA by changing the number of MATLAB workers.

(B) Measuring speedup rate changes in CGA by changing the number of MATLAB workers.

According to Figure 8 (A), IGA efficiency decreases with increasing the number of
MATLAB workers, and concurrence has a negative effect on this method. It appears
that the overload caused by data communication between workers and clients slows
speedup and ultimately reduces system efficiency due to implementing migration and
requiring communication between workers and clients for sending and receiving
migrants between islands by IGA.

Figure 8 (b) shows CGA speedup increases by the number of MATLAB workers in
task allocation problems and can achieve super-linear speedup. This experiment shows
that the concurrency has a positive effect on CGA and well improves its performance.

6.5 Other observations

The two PGAs with the traditional genetic algorithm were run sequentially on a
single processor core and the results were recorded to compare their performance.
Comparisons between these methods suggested that the traditional genetic algorithm
requires two to three times the number of repetitions of more generations than PGAs to
achieve the answer, requiring more runtime. In addition, traditional genetic algorithms
are more likely to be trapped in local optimizations due to their lower diversity than
PGAs. In this case, in particular, IGAs share genetic material due to migration between
sub-populations and increase diversity in them.

7. Conclusion

This study discussed using PGAs for static task allocation problem in distributed
systems. PGAs were successfully applied to this problem and were able to find optimal
solutions to the problem. The performance of parallel algorithms was evaluated by
orthodox and single machine comparison methods. These algorithms performed well on
large-scale problems and have been shown not cost-effective in small-scale problems. In
addition, the results showed that using PGAs, even when executing on one core of a
processor, both decreases the runtime and yields better numerical results. The
interesting point is that division of the population into islands or grids is responsible for
such numerical benefits.

1/36
1/14

0/95
0/82 0/83

0
0/2
0/4
0/6
0/8

1
1/2
1/4
1/6

٢ ۴ ۶ ٨ ١ ٠

Sp
ee

du
p

N of matlab workers

Speedup of island genetic algorithm

 case(12,4)
1/52

1/54
1/55

1/57
1/58

1/49
1/50
1/51
1/52
1/53
1/54
1/55
1/56
1/57
1/58
1/59

٢ ۴ ۶ ٨ ١ ٠

Sp
ee

du
p

N of matlab workers

Speedup of cellular genetic algorithm

)١٢�۴(

Journal of Advances in Computer Research (Vol. 11, No. 4, November 2020) 57-72

71

Further studies are recommended to implement the proposed method on a cluster of
computers as well as and develop it for solving other performance criteria or even multi-
objective allocation problems. It is recommended to use this method to increase system
reliability and load balancing on processors.

References

[1] P. Neelakantan and S. Sreekanth, "Task allocation in distributed systems," Indian Journal of
Science and Technology, vol. 9, 2016.

[2] M. Akbari and H. Rashidi, "A multi-objectives scheduling algorithm based on cuckoo
optimization for task allocation problem at compile time in heterogeneous systems," Expert
Systems with Applications, vol. 60, pp. 234-248, 2016.

[3] Y. Jiang, "A survey of task allocation and load balancing in distributed systems," IEEE
Transactions on Parallel and Distributed Systems, vol. 27, pp. 585-599, 2016.

[4] J. Wu, Distributed system design: CRC press, 2017.

[5] R. Kaluri and P. R. CH, "Optimized feature extraction for precise sign gesture recognition using
self-improved genetic algorithm," International Journal of Engineering and Technology
Innovation, vol. 8, pp. 25-37, 2018.

[6] J. Liu, B. Ma, and H. Zhao, "Combustion parameters optimization of a diesel/natural gas dual
fuel engine using genetic algorithm," Fuel, vol. 260, p. 116365, 2020.

[7] X. Lü, Y. Wu, J. Lian, Y. Zhang, C. Chen, P. Wang, et al., "Energy management of hybrid
electric vehicles: A review of energy optimization of fuel cell hybrid power system based on
genetic algorithm," Energy Conversion and Management, vol. 205, p. 112474, 2020.

[8] Z. Jalali, E. Noorzai, and S. Heidari, "Design and optimization of form and façade of an office
building using the genetic algorithm," Science and Technology for the Built Environment, vol.
26, pp. 128-140, 2020.

[9] D. P. Augustine and P. Raj, "Performance Evaluation of Parallel Genetic Algorithm for Brain
MRI Segmentation in Hadoop and Spark," Indian Journal of Science and Technology, vol. 9,
2016.

[10] P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, "Parallel genetic algorithm based automatic path
planning for crane lifting in complex environments," Automation in Construction, vol. 62, pp.
133-147, 2016.

[11] Z.-K. Feng, W.-J. Niu, J.-Z. Zhou, C.-T. Cheng, H. Qin, and Z.-Q. Jiang, "Parallel multi-
objective genetic algorithm for short-term economic environmental hydrothermal scheduling,"
energies, vol. 10, p. 163, 2017.

[12] X.-Y. Zhang, J. Zhang, Y.-J. Gong, Z.-H. Zhan, W.-N. Chen, and Y. Li, "Kuhn–Munkres parallel
genetic algorithm for the set cover problem and its application to large-scale wireless sensor
networks," IEEE Transactions on Evolutionary Computation, vol. 20, pp. 695-710, 2016.

[13] E. Alba and J. M. Troya, "A survey of parallel distributed genetic algorithms," Complexity, vol.
4, pp. 31-52, 1999.

[14] J. Kacprzyk and W. Pedrycz, Springer handbook of computational intelligence: Springer, 2015.

[15] H. S. Stone, "Multiprocessor scheduling with the aid of network flow algorithms," IEEE
transactions on Software Engineering, pp. 85-93, 1977.

[16] Y. Jiang, "A survey of task allocation and load balancing in distributed systems," IEEE
Transactions on Parallel and Distributed Systems, vol. 27, pp. 585-599, 2015.

[17] P. K. Yadav, M. Singh, and K. Sharma, "Task Allocation Model for Reliability and Cost
optimization in Distributed Computing System," International Journal Of Modeling, Simulation,
and Scientific Computing, vol. 2, pp. 131-149, 2011.

Static Task Allocation in Distributed … M. Taheri Sarvtamin

72

[18] A. Y. Hamed, "Task allocation for minimizing cost of distributed computing systems using
genetic algorithms," International Journal of Advanced Research in Computer Science and
Software Engineering, vol. 2, 2012.

[19] M. Chaubey and M. Gupta, "DESIGNING A TASK ALLOCATOR FRAMEWORK FOR
DISTRIBUTED COMPUTING," International Journal of Advanced Research in Computer
Science, vol. 10, 2019.

[20] M. Akbari, "An efficient genetic algorithm for task scheduling on heterogeneous computing
systems based on TRIZ," Journal of Advances in Computer Research, vol. 9, pp. 103-132, 2018.

[21] M. Hosseini, "A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous
Distributed Systems," Journal of Advances in Computer Research, vol. 9, pp. 19-36, 2018.

[22] B. Barzegar, S. Habibian, and M. Fazlollah Nejad, "Heuristic algorithms for task scheduling in
Cloud Computing using Combined Particle Swarm Optimization and Bat Algorithms," Journal
of Advances in Computer Research, vol. 10, pp. 83-95, 2019.

[23] P. Yadav, M. Singh, and K. Sharma, "An optimal task allocation model for system cost analysis
in heterogeneous distributed computing systems: A heuristic approach," International Journal of
computer applications, vol. 28, pp. 30-37, 2011.

[24] D. Sudholt, "Parallel evolutionary algorithms," in Springer Handbook of Computational
Intelligence, ed: Springer, 2015, pp. 929-959.

[25] E. Alba, "Parallel evolutionary algorithms can achieve super-linear performance," Information
Processing Letters, vol. 82, pp. 7-13, 2002.

[26] G. Sharma and J. Martin, "MATLAB®: a language for parallel computing," International Journal
of Parallel Programming, vol. 37, pp. 3-36, 2009.

[27] G. Attiya and Y. Hamam, "Hybrid Algorithm for Mapping Parallel Applications in Distributed
Systems," in Fifth International Conference on PRAM, Poland, 2003, pp. 7-10.

[28] G. Attiya and Y. Hamam, "Task allocation for maximizing reliability of distributed systems: A
simulated annealing approach," Journal of parallel and Distributed Computing, vol. 66, pp. 1259-
1266, 2006.

[29] Q.-M. Kang, H. He, H.-M. Song, and R. Deng, "Task allocation for maximizing reliability of
distributed computing systems using honeybee mating optimization," Journal of Systems and
Software, vol. 83, pp. 2165-2174, 2010.

