- Balan K., Qing W., Wang Y., Liu X., Palvannan T., Wang Y., Ma F., Zhang Y. 2016. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. Rsc Advances, 6(46): 40162-40168.
- Bhumi G., Savithramma N. 2014. Biological synthesis of zinc oxide nanoparticles from Catharanthus roseus (L.) G. Don. Leaf extract and validation for antibacterial activity. International Journal of Drug Development and Research, 6(1): 208-214.
- Bi C., Li J., Zhang J. 2017. Biofabrication of Zinc oxide nanoparticles and their in-vitro cytotoxicity towards gastric cancer (MGC803) cell. Biomedical Research-Tokyo, 28:2065-2069.
- Dobrucka R., Długaszewska J. 2016. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23(4): 517-523.
- Gnanasangeetha D., SaralaThambavani D. 2013. One pot synthesis of zinc oxide nanoparticles via chemical and green method. Research Journal of Materials Sciences, 1(7): 1-8.
- Kumar B., Vijayakumar M., Govindarajan R., Pushpangadan P. 2007. Ethnopharmacological approaches to wound healing-exploring medicinal plants of India. Journal of Ethnopharmacology, 114(2): 103-113.
- Lee W.H., Loo C.Y., Bebawy M., Luk F., Mason R.S., Rohanizadeh R. 2013. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology, 11(4): 338-378.
- Mody V.V., Siwale R., Singh A., Mody H.R. 2010. Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2(4): 282-289.
- Mohanpuria P., Rana N.K., Yadav S.K. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10(3): 507-517.
- Nagajyothi P., Cha S., Young J., Sreekanth T.V.M., Kim K.J., Shin H.M. 2015. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology B: Biology, 146: 10-17.
- Nath D., Banerjee P. 2013. Green nanotechnology–a new hope for medical biology. Environmental Toxicology and Pharmacology, 36(3): 997-1014
- Panchatcharam M., Miriyala S., Gayathri V.S., Suguna L. 2006. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Molecular and Cellular Biochemistry, 290(1-2): 87-96.
- Sagar Raut D.P., Thorat R. 2015. Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. International Journal of Science and Research, 4(5): 1225-1228.
- Sathishkumar M., Sneha K., Won S.W., Cho C.W., Kim S., Yun Y.S. 2009., Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 73(2): 332-338.
- Sindhu K., Indra R, Rajaram A, Sreeram KJ, Rajaram R. 2011. Investigations on the interaction of gold–curcumin nanoparticles with human peripheral blood lymphocytes. Journal of Biomedical Nanotechnology, 7(1): 56-56.
Shaabani E., Amini S.M., Kharrazi S., Tajerian R., 2017. Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles. Nanomedicine Journal, 4(2): 115-125.
- Siripireddy B., Mandal B.K. 2017. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Advanced Powder Technology, 28(3): 785-797.
- Sun J., Wang S., Zhao D., Hun F., Weng L., Liu H. 2011. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biology and Toxicology, 27(5): 333-342.
- Suresh D., Nethravathi P.C., Sharma S. 2015. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Materials Science in Semiconductor Processing, 31: 446-454.
- Umamaheswari A., Lakshmana Prabu S., Puratchikody A. 2018. Biosynthesis of zinc oxide nanoparticle: a review on greener approach. MOJ Bioequivalence and Bioavailability, 5: 151-154.
- Umar H., Kavaz D., Rizaner N. 2019. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal of Nanomedicine, 14: 87.
- Valdiglesias V., Costa C., Kiliç G., Costa S., Pásaro E., Laffon B., Teixeira J.P. 2013. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environment International, 55: 92-100.
- Vigneshwaran N., Kumar S., Kathe A.A., Varadarajan P.V. 2006. Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology, 17(20): 5087.
- Wang D., Guo D., Bi H., Wu Q., Tian Q., Du Y. 2013. Zinc oxide nanoparticles inhibit Ca2+-ATPase expression in human lens epithelial cells under UVB irradiation. Toxicology in vitro, 27(8): 2117-2126.
- Yang S.T., Liu J.H., Wang J., Yuan Y., Cao A., Wang H., Liu Y., Zhao Y. 2010. Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment. Journal of Nanoscience and Nanotechnology, 10(12): 8638-8645.
- Zhang J., Qin X., Wang B., Xu G., Qin Z., Wang J., Wu L., Ju X., Bose D.D., Qiu F., Zhou H., Zou Z. 2017. Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death and Disease, 8(7): e2954.
|