- Abdeen, S., Isaac, R.R., Geo, S., Sornalekshmi, S., Arsula R.and Praseetha, P.K. (2013). Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomyces sp. on human pathogens, Nano Biomedicine & Engineering, 5 (1): 39–45.
- Alsamhary, K., Al-Enazi, N., Alshehri, V. and Ameen, A. (2019). Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microbial Pathogenesis. S0882-4010(19): 31129-5.
- Ansari, sh. A.. Oves, M. Satar R. Khan K. Ahmad, S.I and et al. (2017). Antibacterial activity of iron oxide nanoparticles synthesized by co -precipitation technology against Bacillus cereus and Klebsiella pneumoniae. Chemical Technology, 4(19): 110-115.
- Arora, A.K., Sharma, M., Kumari, R., Jaswal, V.S and Kumar, P. (2014). Synthesis, characterizationand magnetic studies of α-Iron oxide nanoparticles. Nanotechnology, 474909, 7.
- Bellova, A., Bystrenova,E., Koneracka, M., Kopcansky, P., Valle, F. and Tomasovicova, N.(2010). Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 21.065103.
- Bezza,F. A., Tichapondwa, Sh. M. and Chirwa, EM. N. (2020). Fabrication of monodispersed copper oxide nanoparticles with potentialapplication as antimicrobial agents. Scientific Reports - Nature, 10: 16680.
- Choi, S., Britigan, B,and Narayanasamy, P.(2019). Iron/Heme Metabolism-Targeted Gallium (III) Nanoparticles Are Activeagainst Extracellular and Intracellular Pseudomonas aeruginosa and Acinetobacter Baumannii. Antimicrob Agents Chemother. 63(4): e02643-18.
- Craun, G.F.(1986). Statistics of Water borne Disease in the United States. CRC Press, Inc, Boca Raton, Florida.
- Das, S., Diyali, S., Vinothini, G., Perumalsamy, B., Balakrishnan, G. and Ramasamy,T. (2020). Synthesis, morphological analysis, antibacterial activity of iron oxidenanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon Journal, 6(9): e04953.
- Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M. and Morelli, G. (2015). Silver nanoparticles as potential antibacterial agents. Molecules Journal, 20(5): 8856–8874.
- Gauthier, F and Archibald, F. (2001). The ecology of “Faecal indicator” Bacteria commonlyfound in pulp and paper mill water systems. Water research. Vol. 35(9):2207-2218.
- Gomez, N.T., Nava, O., Argueta-Figueroa, L., García-Contreras, R., Baeza-Barrera, A and Vilchis-Nestor,A.R.(2019). Shape Tuning of Magnetite Nanoparticles Obtained by Hydrothermal Synthesis: Effect of Temperature. Nanomaterials.10.1155. (15).
- Ifeanyichukwu, U.L., Fayemi, O.E. and Ateba, C.N. (2020). Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate Punica granatum Extracts and Characterization of Their AntibacterialActivity. Molecules journal, 25(19): 4521.
- Ikhile, M.I,. Barnared, T.G. and Ngila, J.C. (2017). Potential application of synthesized ferrocenylimines compounds for the elimination of bacteria in water. Physics and Chemistry, 100: 121-125.
- Kon, K. and Rai, M. (2013). Metallic nanoparticles: mechanism of antibacterial action and infl uencing factors. Comparative Clinical Pathology. 2(3), 160–2174.
- Li, H., Chen, Q., Zhao, J. and Urmila, K. (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep, 5(5), 11033–11040.
- López, E. S., Gomes, D., Esteruelas, G., Bonilla, L., Machado, A. L. L and Galindo, R. (2020). Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials Basel, 10(2): 292.
- Masadeh, M.M., Karasneh, G. A., Al-Akhras, M.A., Albiss, B.A.,Aljarah, K. M. and Al-azzam, S. (2015). Cerium oxide and iron oxide nanoparticles abolish the antibacterialactivity of ciprofloxacin against gram positive and gram negative biofilmbacteria. Cytotechnology journal, 67(3): 427–435.
- Medema, G.J., Shaw, S., Waite, M., Snozzi, M., Morreau, A. and Grabow, W. (2003). Catchment haracteristics and source water quality. In: Assessing Microbial Safety of Drinking Water. Improving Approaches and Method. WHO & OECD, IWA publishing, London, UK. 111-158.
- Mohamed, Y.M., Azzam, A.M., Amin, B.H. and Safwat, N.A. (2015). Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Biotechnology and applied biochemistry.14 (14):1234–1241.
- Moshafi, M. H., Ranjbar, M. and Ilbeigi, G. (2019). Biotemplate of albumen for synthesized iron oxide quantum dotsnanoparticles (QDNPs) and investigation of antibacterial effect againstpathogenic microbial strains. International Journal of Nanomedicine, 14: 3273–3282.
- Murray, P., Baron, R., Pfauer.E.J., Tenoyer, M., Yolken, F.C and Robert, H. (1999) Editors Manual of clinical Microbiology. 7th ed. Philadelphia: American Society for Microbiology.
- Parvekar, P., Palaskar, J., Metgud, S., Maria, R and Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidalconcentration (MBC) of silver nanoparticles against Staphylococcusaureus Biomater. Clinical, Cosmetic and Investigational Dentistry, 7(1): 105–109.
- Peavy Howard, s., Row Donald, R. and George T. (1985). Environmental Engineering. Mc Graw-Hill, (No. 628 P4).
- Pulit, J., Banach, M., Szczyglowska, R. and Bryk, M. (2013). Silver Nanoparticles as an effective biocidal factor. Acta Biochim. Polonica, 60 (4): 795–798.
- Reem, K.F., Labena, A., Fakhry,S.H Safwat G., Diab,A and Atta, E.M. (2019). Antimicrobial Activity of Hybrids Terpolymers Based on MagnetiteHydrogel Nanocomposites. Materials Journal. 12(21): 3604.
- Shabani, N., Javadi,A., Jafarizadeh Malmiri, H, Mirzaie,H and Sadeghi J. (2020). Potential application of iron oxide nanoparticles synthesized by co-precipitation technology as a coagulant for water treatment in settling tanks Mining, Metallurgy & Exploration.
- Shazia,P., Wania, A.H., Shahb,M. A., Devib, H. S., Bhata, M.Y. and Abdullah, J.(2018). Characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathogenesis, 115 287–292.
- Shabani L.N., Shayegh. J and Sadegh. j. (2018). Frequency of blaTEM ،blaSHV, and blaCTX-M genes encoded extended-spectrum betalactamases in Escherichia coli isolates collected from groundwater in East Azerbaijan province in 2014. Med J Tabriz Uni Med Sciences Health Services, 40(2):57-63.
- Thukkaram, M., Sitaram, S. K., annaiyan, S. K., Subbiahdoss, G. (2014). Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces. Biomaterials science and engineering, Article ID 716080, 6.
- Vogel, T.M., Criddle, C.S., McCarty, P.L. (1987). Transformations of halogenated aliphatic compounds. Environmental science & technology. 21(8): 722-736.
- Zomorodian,K., Veisi,H., Mousavi, S.M., Sadeghi Ataabadi, M., Yazdanpanah, S. andBagheri,J.(2018). Modified magnetic nanoparticles by PEG-400-immobilized Agnanoparticles (Fe O@PEG–Ag) as a core/shell nanocomposite andevaluation of its antimicrobial activity. International Journal of Nanomedicine, 13: 3965–3973.
|