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Abstract 
In many processes, quality characteristic is identified by the regression relationship between one or more 
dependent variables and one or more independent variables called profile. In this paper, a control chart based on 
discriminant analysis (DA) is proposed to monitor simple linear profiles in Phase II. A chi-square control chart 
joined with DA chart is also used to improve detecting variance shifts. Performance of the proposed method is 
evaluated in terms of average run length using Monte-Carlo simulations. Performance of the proposed control 
chart is compared to the basic methods in simple linear profile monitoring literature. Results present the desirable 
performance of the proposed method. The real case in shoes leather industry is also investigated to show the 
effectiveness of the proposed method. Results also confirm an acceptable performance of the real case, because 
the average run length of the proposed control chart is less than the average run length of the comparable method. 
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1. INTRODUCTION 

Discriminant analysis (DA) is a statistical tool that used for 
classification purpose. Two-group discriminant analysis is 
used for classifying observations in two groups. For this 
purpose, at first the discriminant function separating two 
groups must be constructed. Then, a new observation can be 
classified in one of the existing groups. Some researchers 
focused on monitoring a process or product quality 
characteristics using discriminant analysis. Maleki and 
Sahraeian (2015) chose to use linear DA and artificial neural 
network (ANN) to monitor the mean vector of a correlated 
multivariate-attribute process. Wang et al. (2016) also 
utilized distance discriminant analysis method for the stator 
winding single-phase grounding faults indicating that the 
distance discriminant analysis model has a great precision 
and less mistakes. Zhang et al. (2016) combined DA with 
kernel dictionary learning. They showed that sparse 
representation based classification (SRC) due to a linear 
algorithm, is not suitable for nonlinear data. They propose a 
new feature learning technique KDL-DA (Kernel dictionary 

learning based discriminant analysis) in order to assess a 
projection matrix and kernel dictionary at the same time. Hu 
and Li (2012) applied bayes discriminant analysis 
technique. linear DA is also used by Theophilou et al. 
(2016) who used principal component analysis (PCA), 
successive projection (SPA) and genetic algorithm (GA), 
followed by linear discriminant analysis (LDA) for 
diagnosing benign and malignant tumors as well as 
classifying different tumor subtypes. In addition, Lim et al. 
(2018) presented a new robust linear discriminant analysis 
in order to solve the classic LDA problems. Alfaro et al 
(2015), for testing the performance of linear discriminant 
analysis, neural networks, classification trees and boosting 
trees, used different simulated scenarios with different 
correlation structure and shift type. The findings 
demonstrate that Boosting tree method show better 
performance under the more feasible circumstances, while 
the performance of the other methods is related to the 
correlation structure and the class of change. Juefei-Xu and 
Savvides (2016) considered Multi-class Fukunaga Koontz 
Discriminant Analysis (FKDA) by utilizing the Fukunaga 
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Koontz Transform for separating classes in Fisher’s Linear 
Discriminant Analysis, Locality Preserving Projections 
(LPP) and Unsupervised Discriminant Projection (UDP) 
which are linear subspace learning methods used in face 
recognition. The advantages of represented method FKDA, 
in comparison with the past methods, are trying hard to find 
out optimal projection direction vectors which are 
orthogonal as well as detecting accurately answers to the 
“trace ratio” purpose in discriminant analysis problems. Ren 
et al. (2019) investigated the identification of asphalt 
fingerprints based on ATR-FTIR spectroscopy and principal 
component-linear discriminant analysis. They combined the 
attenuated total reflectance fourier transform infrared 
spectroscopy (ATR-FTIR) with the chemo metric methods. 
Some researchers used Fisher discriminant analysis to 
classification purpose. For nonlinear multivariate processes, 
Galiaskarov et al. (2017) proposed a new method by 
combining kernel principal component analysis with a 
moving window for monitoring. They also used fisher 
discriminant analysis to recognize the faults. Nor et al. 
(2015) integrated nonlinear kernel variation of Fisher 
discriminant analysis (FDA) with the wavelet analysis 
called multi-scale kernel Fisher discriminant analysis 
(MSKFDA). The advantage of this method is an efficient 
division of the deterministic and stochastic characteristics 
and considering time and frequency domain aspects which 
leads to extracting characteristics related to out-of-control 
circumstances. Pei et al. (2006) conducted a research in 
which an absolute-value based fisher discriminant analysis 
and the individuals and moving range chart are combined 
for creating a novel fault detection algorithm. They 
presented quantitative data classification method and 
projected trend analysis that are two kinds of fault detection 
approaches by applying the discriminant model. Zheng et al. 
(2019) worked on fault classification by the semi-supervised 
Fisher Discriminant Analysis for monitoring the industrial 
processes. Integrating the metric level outputs and the K 
Nearest Neighbor (KNN) algorithm gained by the sub-
classifiers provided a method for finding the final 
classification outcome. Because of using additional 
information obtained from unlabeled data, semi-supervised 
learning is more likely to produce more efficient model. In 
another research conducted by Nor et al. (2017), three 
classifiers including wavelet analysis, Kernel Fisher 
discriminant analysis (KFDA), and support vector machine 
(SVM) for fault detection and diagnosis (FDD) in chemical 
process system were employed. In order to measure the 
performance of the suggested multi-scale KFDA-SVM 
techniques, the simulated Tennessee Eastman process was 
employed as a benchmark. One of the attractive use of 
discriminant analysis is in the classification of data obtained 
from space missions. In these circumstances, the massive 
volume of data is available that requires advanced statistical 
methodologies for extracting information. In order to deal 
with this problem, Nassar and Hussein (2015) proposed the 
new advanced learning algorithm by utilizing projection to 

latent structure discriminant analysis technique (PLS_DA). 
Their represented method is capable of modeling, analyzing, 
classifying data and detecting core contributors to abnormal 
events when many predictors and response variables are 
measured. Some researchers employed Partial Least Square 
Discriminant Analysis in their research. Maquina et al. 
(2017) applied infrared spectroscopy with partial least 
square discriminant analysis for characterizing the moringa, 
mafurra and cotton biodiesel mixes. Yan et al. (2015) 
developed a method for batch-to-batch quality control 
represented by using HPLC-MS fingerprint and process 
knowledgebase. They obtained the fingerprints of extract 
solutions generated by normal and abnormal operation 
conditions after conducting the HPLC-MS fingerprint 
analysis method in which fault detecting was conducted by 
multivariate statistical models and fault diagnosis was 
detected by a discriminant analysis model based on the 
probabilistic discriminant partial-least-squares method. 
Zhao et al. (2016) utilized the other kind of discriminant 
analysis called nested-loop Fisher discriminant analysis 
(NeLFDA) algorithm. Zhao and Gao (2015) also presented a 
novel discriminant analysis for improving the weaknesses of 
traditional Fisher discriminant analysis (FDA) by deploying 
a nested loop algebra. The new nested-loop Fisher 
discriminant analysis (NeLFDA) aims to eliminate three 
drawbacks of conventional model. The fault diagnosing 
performance and classification ability of this method show 
good performance as opposed to the old ones. Deng et al. 
(2017) proposed Fault discriminant enhance kernel principle 
component analysis (FDKPCA) which uses historical fault 
data for boosting the efficiency of fault detection. Nonlinear 
Kernel principal components (KPCs) and fault discriminant 
components (FDCs) which are two kinds of data 
characteristics were monitored at the same time by their 
represented method. In this method, Kernel local-nonlocal 
preserving discriminant analysis (KLNPDA) was used for 
detecting FDCs; and KPCA was applied for monitoring 
KPCs based on normal operation data.  
One of the area that has many applications in industries is 
profile monitoring that can be defined as the relationship 
between one or more dependent variables and one or more 
independent variables. Profiles have different types one of 
which is simple linear profile. There can be found many 
conducted research regarding monitoring the profile 
processes. For example, for simple linear profile monitoring 
in Phase II focused in this paper, Kang and Albin (2000), 
Kim et al. (2003), Gupta et al. (2006), Zou et al. (2006), Zou 
et al. (2007), Zhang et al. (2009), Mahmoud et al. (2010), Li 
and Wang (2010), Zhu and Lin (2010), Hosseinifard et al. 
(2011) and Noorossana and Ayoubi (2012) proposed some 
monitoring methods. Narvand et al. (2013) used linear 
mixed model to monitoring auto-correlated linear profiles in 
Phase II. Kalaei et al. (2018) considered monitoring of 
standard deviations in multistage linear profiles in Phase I. 
Maleki et al. (2018) carried out a comprehensive review on 
the area of profile monitoring. Rahimi et al. (2019) 
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monitored mean vector and covariance matrix of 
multivariate simple linear profiles by considering within 
profiles correlation. Ahmadi et al. (2019) focused on 
monitoring  multivariate simple linear profiles with 
estimated parameters in Phase II. Moheghi et al. (2020) 
considered monitoring GLM profiles using robust 
estimators. Haq et al. (2020) focused on monitoring simple 
linear profiles with one observation per sample.  
Having studied the literature of discriminant analysis and 
simple linear profile monitoring, one can find out that the 
usage of discriminant analysis-based control charts in 
monitoring profile characteristics, can be considered as a 
gap in this scope. However, discriminant analysis was not 
utilized in the area of profile monitoring, so this method is 
opted for monitoring the simple linear profiles in Phase II, 
in this paper. In the next section, simple linear profile model 
will be presented. In section 3, the proposed method is 
introduced. Then, the findings of simulation results by using 
Mont Carlo method will be demonstrated in section 4. 
Section 5 deals with the real case of shoes leather industry. 
In the final section, concluding remarks are presented.  
 

2. SIMPLE LINEAR PROFILES MODEL IN 
Phase II  

In many practical situations, the quality of a product or 
process is defined by a relationship between one or more 
response variables and one or more independent variables 
entitled profile. One kind of profiles is simple linear profile 
in which a dependent variable is related to an independent 
variable. In simple linear profiles, jth sample consists of n 
fixed ix  (independent variables), hence n observations of 
( , )ji ix y  are available. Therefore, the in-control simple 
linear profile model is shown by the following equation: 

0 1ij j j i ijy A A x     , 1,2, ,i n   (1) 

The matrix form of the above equation is modeled as: 
j j j y Xa ε  (2) 
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where ijy  is the dependent variable for ith observation (

1, 2, ,i n  ) in the jth sample ( 1,2,...j  ) and ix is the 
independent variable for the ith observation. Also, ij ’s are 
independent and identically distributed normal random 
errors with fixed variance of 2 .  
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3. PROPOSED DISCRIMINANT ANALYSIS-
BASED CONTROL CHART FOR 

MONITORING SIMPLE LINEAR PROFILES 
IN PHASE II  

In control charts, there are two types of data that should be 
separated which are in-control and out-of-control data sets. 
Discriminant analysis by using the special groups defined 
by the users can divide all data in the pre-specified in-
control and out-of-control groups. Therefore, the purpose of 
control chart is analogous with discriminant analysis that 
justifies the use of DA in monitoring processes. For this 
purpose, at first the discriminant function must be derived 
using supervised procedure.  
In this paper regarding to Zolfaghari and Amiri (2016), two 
statistics of 2T  and multivariate exponentially weighted 
moving average (MEWMA) are considered as the variables 
of discriminant function. Zolfaghari and Amiri (2016) used 
geometric rotation procedure to find the discriminant 
function. However, in this paper, the algebraic fisher 
discriminant function is applied to construct the 
discriminant function.  
The DA statistic for sample j, which is a linear combination 
of MEWMA and 2T statistics, is defined as follows: 

2
1 2 ( ),j j jDA W MEWMA W T     

(5) 

where the jMEWMA statistic is calculated as follows: (Note 
that to achieve the smaller value of the statistic, the mean-

corrected vector of 0 0
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smoothing constant.) 
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Hence, we have: 
' 1

jj j jMEWMA  zz z , 
(7) 

where the covariance matrix of jz  is: 
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where,  
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The 2T  part of the DA statistic is derived as: 
2 1
j j jT  ee e  , (10) 

The values of 1W  and 2W  in DA statistic of Equation (5) are 
also calculated using algebraic fisher discriminant analysis. 
Hence, matrices of sum of square within (W), sum of square 
between (B) and sum of square total (T) can be structured 
due to the following steps: 
1. Produce 1000 in-control samples so that 1000 in-control 

MEWMA and 2T  statistics are calculated (i.e. samples 
1 to 1000 are in-control). 

2. Produce 1000 out-of-control samples so that 1000 out-
of-control MEWMA and 2T  statistics are calculated. 
(i.e. samples 1001 to 2000 are out-of-control). 

3. Consider 1000 in-control samples as the observations of 
group 1 and 1000 out-of-control samples as the 
observations of group 2. Each group has two variables of 
MEWMA and 2 .T  

4. Calculate the matrix of W such as 
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6. Compute the matrix of B as follows: 

 B T W  (17) 

7. Calculate the eigenvalues and eigenvectors of 1W B  
matrix by solving the following equation: 

1
2 2 0
 W B I , (18) 

where, 2 2I  is an identity matrix. (Note that for 2 by 2 
matrices, two distinct values of  are calculated as 
eigenvalues. For two-group DA, only the greatest value 
of  is required to compute one discriminant function. 
Solving Equation (18) is similar to choosing the first 
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principal component of  1W B  matrix. Coefficients of 
the first principal component are considered as W1 and 
W2 of Equation (5)). 

In this paper, the upper control limit of the DA statistic of 
Equation (5) is obtained using 10000 Monte-Calro 
simulation runs to achieve the desired in-control average run 
length (ARL). 
To improve the performance of the proposed method in 
detecting variance shifts, the chi-square control chart 
introduced by Noorossana et al. (2010) is used in 
conjunction with the DA control chart as bellow: 

2
2

2
1

n
ij

j
i






  , (19) 

where, 2
j  follows chi-square distribution with n degrees of 

freedom. Hence, the upper control limit of the chi-square 
control chart is 2

2
,nUCL    which is 100(1 )

percentile of chi-square distribution with n degrees of 
freedom. 
 

4. PERFORMANCE EVALUATION OF THE 
PROPOSED METHOD  

In this paper, for evaluating the performance of the 
proposed control chart, 10000 Monte Carlo simulation runs 
are used. In this paper, the underlying in-control model used 
by Kang and Albin (2000) is also considered which is 

3 2ij i ijy x    (i.e., 0
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8 (i.e. 4n  ) are considered for x variable. The starting 

vector of 0
0
0
 
 
 

z =  is also used in Equation (6). The value 

of 0.2 is considered for the smoothing constant of  . To 
calculate the discriminant function, the 1000 in-control 
samples are generated from the above-mentioned in-control 
model. To calculate the 1000 out-of-control samples, four 
different shifts are considered so that 250 samples are 
generated when 0A is shifted to the value of 4, 250 samples 
are generated when 1A is shifted to the value of 3, 250 
samples are generated when both 0A and 1A are changed to 
the values of 5.5 and 1.5, respectively. Finally, 250 samples 
are generated when 2 is changed to the value of 2. Due to 
these samples, the discriminant function of 

2=0.9931 +0.1177j j jDA MEWMA T   is obtained by 

finding the first principal component of 1W B  matrix. The 
overall in-control ARL of 200 ( 0.005  ) is considered so 

that 1
3 3 0.005
4 4

    (i.e., in-control ARL of 267) is 

devoted to DA control chart, and 2
1 1 0.005
4 4

    (i.e., 

in-control ARL of 800) is dedicated to the chi-square 
control chart. The upper control limit of the DA control 
chart is 10.84 obtained by simulations to achieve the in-
control ARL of 267. The upper control limit of the chi-
square control chart is 2

2
0.0054,( )

4

17.9715UCL   . 

Simulation results are reported in Tables 1-3. In the Tables, 
the performance of the proposed method is compared to the 
performance of the EWMA-R and 2T proposed by Kang 
and Albin (2000) and EWMA3 method suggested by Kim et 
al. (2003). Tables 1, 2 and 3 present ARL values for shifts 
in intercept, slope and variance of the model, respectively. 
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TABLE 1. ARL VALUES OF THE PROPOSED CONTROL CHART WHEN 0A  SHIFTS TO 0A       

    
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 

Proposed DA- 2  57.3 16.2 8.1 5.2 3.9 3.1 2.6 2.3 2 1.8 

EWMA-R 66.5 17.7 8.4 5.4 3.9 3.2 2.7 2.3 2.1 1.9 
2T   137.7 63.5 28.0 13.2 6.9 4.0 2.6 1.8 1.5 1.2 

EWMA3 59.1 16.2 7.9 5.1 3.8 3.1 2.6 2.3 2.1 1.9 
 

TABLE 2. ARL VALUES OF THE PROPOSED CONTROL CHART WHEN 1A  SHIFTS TO 1A       

 
   

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

Proposed DA- 2  95.9 33.6 15.7 9.4 6.5 5.0 4.1 3.5 3.0 2.7 

EWMA-R 119.0 43.9 19.8 11.3 7.7 5.8 4.7 3.9 3.4 3.0 
2T   166.0 105.6 60.7 34.5 20.1 12.2 7.8 5.2 3.7 2.7 

EWMA3 101.6 36.5 17.0 10.3 7.2 5.5 4.5 3.8 3.3 2.9 
 

TABLE 3. ARL VALUES OF THE PROPOSED CONTROL CHART WHEN   SHIFTS TO       

 
  

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

Proposed DA- 2  37.2 12.7 6.4 3.9 2.8 2.2 1.8 1.6 1.5 1.4 

EWMA-R 34.3 12.0 6.1 3.9 2.9 2.3 1.9 1.7 1.5 1.4 
2T   39.6 14.9 7.9 5.1 3.8 3.0 2.5 2.2 2.0 1.8 

EWMA3 33.5 12.7 7.2 5.1 3.9 3.2 2.8 2.5 2.3 2.1 
 
Results of Tables 1-3 show that the proposed method 
performs much better than the existing method in detecting 
mean shifts. The proposed control chart has also desirable 
performance in detecting variance shifts and its performance 
becomes better when shift size increases.  
 

5. A REAL CASE  

Amiri et al. (2011) used a real case of simple linear profile 
in shoes leather industry. One of the most important quality 
characteristics in the dyeing process is the relationship 
between color effluent (response variable) and temperature 
(predictor variable) in shoes leather industry. Amiri et al. 
(2011) gathered 11 profile samples including color effluent 
at 5 equally-spaced temperatures of 25, 32, 39, 46 and 53ºc. 
Their dataset is reported in Table A of the Appendix. They 
monitored the process in Phase I and concluded that all the 
collected samples are in-control. Hence, using the 11 in-
control profile samples the underlying in-control model is: 

-0.0509 0.0034 ,ij i ijy x     (20) 

Where ~ (0,0.00057)ij N . For calculating the linear 
discriminant function, 1000 in-control data and using 0.5  
shift in each parameter, 1000 out-of-control samples are 

generated. Hence, the linear discriminant function is 
obtained as 2=0.9936 +0.1132j j jDA MEWMA T  .  

The performance of the proposed DA- 2  control chart is 
compared to the performance of EWMA3 method 
performing better than 2T  and EWMA-R methods. Also, 

0.02  shift is imposed to the profile slope. The overall in-
control ARL of 200 is also considered in this case. The 
value of 0.2   is also chosen. In the proposed DA- 2  

control chart, the UCL of DA and 2  control charts are 
10.84 and 19.9995, respectively. For EWMA3 method to 
achieve an overall in-control ARL of 200, the values of 
40.00465, 3.012 and 0.16117 are chosen for LI, LS and LE, 
respectively. (For more details about the EWMA3 method, 
refer to kim et al. (2003)). 
Since, we consider only the shift in slope to conduct our 
comparison, only DA in the proposed DA- 2  control chart, 
and only EWMA  chart for slope in EWMA3 method are 
considered. Figures 1-2 show the results of DA and slope 
EWMA control charts demonstrating the DA and slope 
EWMA charts issue an out of control signal at sample 4 and 
sample 9, respectively. Hence, the DA control chart 
outperforms the EWMA3 methods. 
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FIGURE 1. PERFORMANCE OF THE SLOPE EWMA CHART IN EWMA3 METHOD UNDER 0.02  SHIFT IN SLOPE PARAMETER 

 

 
FIGURE 2. PERFORMANCE OF THE DA CONTROL CHART IN DA- 2 METHOD UNDER 0.02  SHIFT IN SLOPE PARAMETER 

 
6. CONCLUDING REMARKS 

In this paper, a control chart based on discriminant 
analysis was proposed to monitor simple linear profiles 
in Phase II. The chi-square control chart was also used 
in conjunction with the DA control chart to improve 
detecting variance shifts. Simulation results confirmed 

the ideal performance of the proposed method in 
detecting mean shifts. In detecting the variance shifts, 
the proposed method performs better in moderate to 
large shifts, and its performance in small variance shifts 
is also acceptable. The performance of the proposed 
method was evaluated in shoes leather industry to show 
its acceptable performance in a real case. 
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                            Appendix 
The secondary dataset of leather color effluent: 

TABLE A. LEATHER COLOR EFFLUENT FOR 11 PROFILES IN 5 DIFFERENT TEMPERATURES (Amiri et al..; 2011)    

     Temerature 
 
Sample Number 

25 32 39 46 53 

1 0.0218 0.02878 0.09083 0.10111 0.12566 
2 0.0302 0.05422 0.07183 0.11716 0.13127 
3 0.0288 0.02868 0.08575 0.09310 0.13549 
4 0.0306 0.07571 0.01011 0.11624 0.12850 
5 0.0488 0.02806 0.08549 0.11812 0.11880 
6 0.0310 0.09438 0.07157 0.11922 0.14965 
7 0.0231 0.07626 0.08093 0.13988 0.15714 
8 0.0455 0.09253 0.15109 0.08746 0.14101 
9 0.0209 0.04746 0.10231 0.12651 0.12299 
10 0.0578 0.02227 0.11557 0.11261 0.09202 
11 0.0463 0.06435 0.08679 0.07877 0.10632 

 
 


