
Adv. Math. Fin. App., 2023, 8(2), P. 645-666 

 Advances in Mathematical Finance & Applications 
www.amfa.iau-arak.ac.ir 

Print ISSN: 2538-5569 

Online ISSN: 2645-4610 

Doi: 10.22034/AMFA.2021.1915292.1525 

 

 

 
* Corresponding author. Tel.: 09131625634 

E-mail address: dr.ghodrati42@gmail.com 

  

© 2023. All rights reserved.    

  Hosting by IA University of Arak Press                 

 

Applied-Research Paper 

 

Making Decision on Selection of Optimal Stock Portfolio Em-

ploying Meta Heuristic Algorithms for Multi-Objective Func-

tions Subject to Real-Life Constraints 

 
Ali Sepehri a, Hassan Ghodrati Ghazaani  b,٭, Hossein Jabbari c, Hossein Panahian b 

a Department of Industrial Management- Financial, Kashan Branch, Islamic Azad University, Kashan, Iran 

b Department of Management, Kashan Branch, Islamic Azad University, Kashan, Iran 
cDepartment of Accounting, Kashan Branch, Islamic Azad University, Kashan, Iran 

 
 

ARTICLE INFO 

Article history:  

Received 2020-11-26  

Accepted 2021-02-03  

 

Keywords: 

Capital Decision Making 

Simulation 

Stock Portfolio Optimization 

Real- Life Constraints 

Multi-Objective Function 

 

ABSTRACT 

The purpose of this study is to utilize data envelopment analysis and metaheuristic 

algorithms to make investment decisions and select an optimal stock portfolio, 

considering real-life constraints and multi-objective functions. The statistical 

population for this research comprises 183 selected companies from the Tehran 

Stock Exchange involved in capital decision-making and optimal capital composi-

tion. Eventually, 42 companies were identified as justifiable investment options. 

After assessing the risk and return of efficient companies, the study formulated a 

multi-objective model based on the investor's budget limitations, requirements, 

and expectations to determine the investment composition. To achieve optimal 

decisions, a modified genetic metaheuristic algorithm and MATLAB software 

with dual operators were employed. Sensitivity analysis revealed that eliminating 

the risk minimization function enhanced the decision's return level but increased 

risk. Conversely, eliminating the maximizing return function improved decision-

making risk but reduced investment return. Eliminating investment requirements 

and expectations increased returns and investment risk while involving more 

companies in the optimal investment portfolio. 

 

1 Introduction 
 

Due to the significance of stock portfolio optimization for investors, this study aims to provide im-

proved tools for solving this problem with a new approach. Many researchers today acknowledge the 

inefficiency of financial markets and recommend the adoption of new investment approaches instead 

of relying solely on traditional methods based on historical data. One crucial issue in capital markets 

that investors, both natural and legal entities, need to address is the selection of an optimal investment 

combination or portfolio with considerations of risk and return [1].  

A review of existing research literature reveals that while heuristic and metaheuristic methods such 

as genetic algorithms have been extensively employed in optimal portfolio selection, previous studies 

only focused on basic criteria of risk and return, either individually or jointly, and neglected other 

factors influencing capital decision-making, such as stock liquidity. Additionally, these simulations 
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often only considered the constraint of investment composition or budget, disregarding other real con-

straints like investment requirements [12]. Therefore, this study introduces an innovative aspect in 

response to the needs and realities of capital decision-making by selecting the optimal combination 

based on two dimensions: the multiplicity of target criteria and practical limitations in determining the 

selection environment. This represents a step towards making the capital decision-making environ-

ment more objective and embracing a multidimensional approach to investment. The research litera-

ture concerning optimal combination selection in investment generally defines it as a form of capital 

decision-making, where the decision-maker chooses the best combination among various investment 

options using judgment methods, mathematical modeling, or simulations.  

Previous studies, although evaluating different combinations and ultimately determining the opti-

mal combination, often neglected the initial decision-making algorithm in their modeling and defini-

tion. By defining the initial environment and investment selection environment as "decision-taking" or 

"decision assistance," wherein a suitable environment is created to facilitate capital decision-making, 

this step can be explicitly addressed, paving the way for optimal portfolio selection or "decision-

making." Many studies, including those conducted by previous researchers [11, 17], have explored 

various mathematical optimization, simulation, judgment, or multi-criteria methods for portfolio op-

timization without differentiating between decision-taking and decision-making stages. Based on the 

aforementioned research problem, the present study aims to address the following key question: What 

are the results of investment decision-making based on the data envelopment analysis (DEA) model 

before selecting the final stock portfolio, and how does the selection of the optimal stock portfolio 

using real-constraint simulation algorithms based on real constraints (MCA) impact the outcomes? 

 

2 Literature Review  

Individual investors, brokers and fund managers invest billions of dollars in various sectors every 

year. Therefore, proper security selection for financial investment comes into prominence since gen-

erating profit throughout all market climates and minimizing losses during market downturns are de-

sired. The most common investment strategy is building a portfolio consisting of different securities 

in order to spread the risk. Traditional portfolio analysis requires the evaluation of return and risk 

conditions of individual securities and may not provide success due to its subjective nature. In 1952, 

performing an analysis of the impact of risk, Markowitz presented a revolutionary approach for port-

folio theory called Mean-Variance (MV) model [11] and initiated the era of modern portfolio theory. 

Using covariance as a risk measure is the key of this revolution since it was a spark that triggered 

quantitative finance. Following this milestone, the MV model has been a standard decision-making 

approach to structure and measure the performance of portfolios [8] that quantitatively focus on the 

investment alternatives utilizing the covariance between securities based on return-risk trade-off [6]. 

Thanks to his pioneering works in finance theory, in 1991, Markowitz was awarded the Nobel Prize 

for economics. Along with the developments in computational power, a growing number of research-

ers from not only financial fields, but also computer scientists and mathematicians have engaged a 

great attention to portfolio optimization (PO), evident by the vast number of publications in scientific 

journals to deal with mean-variance portfolio optimization (MVPO).  

New constraints, objectives, and solution approaches have been developed to address shortcom-

ings of the early MV model [6]. Thus, a significant number of academic papers has been reached by 

accumulation of successive additions to MV model. Aouni, et al. [2] reviewed the lexicographic, 

weighted, polynomial, stochastic and fuzzy goal programming models and pointed out the lack in 

developing computerized decision support systems to accomplish a helpful tool to facilitate the deci-
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sion-making process in portfolio optimization. In a study on Portfolio-Optimization conducted by 

Darabi and Baghban [5] has been the Clayton-copula along with copula theory measures, Portfolio 

Optimization is one of the activities in investment funds. They used copula as an alternative measure 

to model the dependency structure in research. In this regard, given the weekly data pertaining to the 

early 2002 until the late 2013, They used Clayton-copula to generate an optimized portfolio for both 

copper and gold. Finally, the Sharpe ratio obtained through this method has been compared with the 

one obtained through Markowitz mean-variance analysis to ascertain that Clayton-copula is more 

efficient in portfolio-optimization. According to the study conducted by Miryekemami et al. [13], 

decision making has always been affected by two factors: risk and returns. Considering risk, the in-

vestor expects an acceptable return on the investment decision horizon.  

Accordingly, defining goals and constraints for each investor can have unique prioritization. They 

developed several approaches to multi criteria portfolio optimization. The maximization of stock re-

turns, the power of liquidity of selected stocks and the acceptance of risk to market risk are set as ob-

jectives of the problem. In order to solve the problem of information in the Tehran Stock Exchange in 

2017, 45 sample stocks have been identified and, with the assumption of normalization of goals, a 

genetic algorithm has been used. The results show that the selected model provides a good perfor-

mance for selecting the optimal portfolio for investors with specific goals and constraints. Rezaei and 

Elmi [14] showed that the reaction of stock price in the stock market was modelled by the behavioural 

finance approach. The population of this study included the companies listed on the Tehran Stock 

Exchange.  

 
Fig. 1: Classification of models and applications on MVPO [7]: 

Single-objective MV (SOMV); Multi-objective MV (MOMV); Boundary Constraints (BC); Cardinality Con-

straints (CC); Transaction Costs (TC); Roundlot Constraints (RL); Sector capitalization Constraints (SC); Turn-

over Constraints (TUC); Methodologies to deal with various constraints on MVPO (Constraint handling); Vari-

ous performance indicators to test the efficiency of proposed algorithms (Performance Measures). 

 

In order to forecast the stock price, the final price data of the end December, March, June, and Sep-

tember 2006-2015 and the stock prices of 2014 and 2015 were analysed as the sample. In this study, 

Bayes' rule was used to estimate the probability of the model change. Through this rule, the probabil-
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ity of an event can be calculated by conditioning the occurrence or lack of occurrence of another 

event. The results of model estimation showed that there is the probability of being placed in high-

fluctuated regimes (overreaction) and low- fluctuated (under-reaction of stock price despite the shocks 

entered to the stock market. In modelling with the 4-month final prices, it was proved that the real 

stock price had no difference from the market price. 

2.1 Category Selection 

The categorization applied in this review is formed based on different properties of deterministic 

models and applications on MVPO. The categories are formed according to the following criteria: 

models, constraints, constraint handling, solution techniques, performance measures and data. The 

main categories used to classify the publications are shown in Fig. 1. 

 

2.2 Consideration of Real-World constraints 

Despite all the advantages of the original MV model, it falls short in real world applications. The 

original MV model considers only one hard constraint, setting the sum of asset weights to one mean-

ing that sum of invested amounts must be equal to the total budget. Therefore, the MV model needs 

additional constraints to solve realistic PO problems. The real-world constraints that have been added 

to the MV model are summarized in Table 1. 

 

Table 1: Constraints for realistic portfolio optimization [3] 

Boundary constraints (BC) Impose lower and/or upper bounds on the values of each asset weight, also known as buy-

in threshold constraint. 

Cardinality constraints 

(CC) 

Related to the number of assets invested in the portfolio, may be fixed to a certain value, 

may also ensure that the number of assets is between the desired range. 

Transaction costs (TC) Investors pay a fee called transaction costs when they sell or buy stocks influencing the 

total profit. 

 

Roundlot (minimum lots) 

constraint (RL) 

Ensure that the amount invested in a security is multiples of the minimum transaction lot. 

Sector capitalization con-

straints (SC) 

Impose the assets which belong to the sector with more capitalization value to have more 

shares in the final portfolio. 

Turnover constraint (TUC) Sets the turnover rate of an asset from current period to next period which is especially 

useful in multi period portfolio optimization models. 

Table 1 lists the classification of publications according to constraint types. Although transaction 

costs make more sense on multi-period portfolio optimization, researchers widely considered this con-

straint on single-period portfolio optimization for modelling purposes. If the selected portfolio is read-

justed several times according to the determined investment horizon, TUC which is only valid for 

multi period portfolio optimization problems is often added into the model. While the original MV 

model is presented with a quadratic objective function and linear constraints, several researchers add-

ed real life constraints which introduce non-linearity and nonconvexity to MVPO.  

For example, TC may be a nonlinear and nonconvex function of a difference in holdings of new 

and existing portfolio [10] which increases the complexity of the MVPO. However, TUC are to be 

formulated as a linear equation, the problem can still be solved by QP [16]. On the other hand, CC 

together with BC leads to a non-convex search space [9]. Therefore, QP cannot be efficiently utilized 

and hence, researchers often head towards to inexact techniques in realistic cases. 
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3 Research Method 

In the present study, on the one hand, we relied on mathematical modelling with the approach of 

data envelopment analysis in evaluating financial efficiency and also modelling the optimal combina-

tion of investment in financially efficient companies based on quadratic or nonlinear mathematical 

planning, by following similar research in the field of finance or operations research, as well as rely-

ing on annual cross-sectional data or, in some cases, performance averages. Based on this assumption, 

the statistical population of the present study is defined as companies listed in the Tehran Stock Ex-

change Organization with the study period examining the financial period ending March 19. Other 

criteria included non-affiliation to loss-making companies, especially consecutive losses over several 

periods. Under the said criteria we gathered and examined financial data for 183 companies listed on 

the Tehran Stock Exchange. 

 

3.1 Determining the Optimal Composition of Investment 

Without loss of generality, a general multi-objective optimization problem is represented by 

Minimize F (x) = (f1 (x), f2 (x), . . , fm (x))                                                                                        (1) 

S. T: 

x = (x1 , x2 , . . . , xN ) ∈ X     

where, x ∈ X represents a decision vector in N-dimensional space X. If fis' are conflicting objec-

tives, then a point at which all m objectives reach their minimum value do not exist. Hence, in a non-

trivial case of multi-objective optimization, a set of non-dominated solutions with best trade-offs 

among objectives, called Pareto optimal set, is desirable. 

A decision vector x is said to dominate another decision vector y if, 

1.  fi (x) ≤ fi (y) holds ∀i ∈ {1, 2, . . ., m} 

2.  fi (x) < fi (y) holds for at-least one index ∀i ∈ {1, 2, . . ., m} 

This is represented by F(y) ≤ F(x). Then, Pareto optimal set (P) is defined as 

P = {x ∈ X | ∀y ∈ X, for which F (x) ≤ F (y)} 

Weighted sum approach of tackling multi-objective optimization problem by combining multiple 

conflicting objectives into a single objective is parameterized by weight parameters. A single run of 

the algorithm does not provide the set of optimal trade-offs between objectives. Further, if the prob-

lem under consideration is a general non-convex problem, then a set that best approximates the Pareto 

optimal set is pursued. MOEAs are population based search procedures, designed for getting a set of 

approximate optimal trade-off solutions. There are no underlying assumptions on the structure of ob-

jectives and constraints of the problem, this enables them for handling complex problems to approxi-

mate a set of solutions in proximity of true Pareto front. MOEAs have been successfully applied in a 

variety of real-world problems e.g., optimal power flow problems, water distribution systems, remote 

medical resource assignment, wireless sensor networks etc [15]. In this study, CCPO with several 

hard (equality) constraints are handled using MOEAs. Four MOEAs are adapted by incorporating 

proposed candidate generation method and repair mechanism. In following subsections, a general 

structure used for modifying MOEAs is discussed in detail. 

Step 1: Encoding: 

A single real vector of size N represents a candidate solution or weights of a portfolio. Decision 

variables zis' are handled by the candidate generation method implicitly. Apart from better space com-

plexity, a further advantage of this representation is that the recombination process can be applied 

effectively only to the selected assets for efficient subspace exploration. 

mailto:@y
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Step 2. Population initialization: 

The population is initialized randomly. Following steps are required to generate a candidate solu-

tion or a portfolio in the initial population. 

1. Cardinality k is chosen randomly with equal probability from k1 to k2 i.e. k ∈ {K1, K2,… , kN}. 

2. k-p positions out of N-p positions in the index set {1, 2, ... , N} \ Ip, are selected randomly for al-

location. 

3. For each selected position in the above step and given p preassigned asset positions in set Ip, 

uniformly distributed random variable between their respective bounds is generated and allocated. 

It is apparent from the foregoing steps that initial population would be infeasible in general. Par-

ticularly, solutions in the initial population follow pre-assignment, cardinality, floor and ceiling con-

straints, however, does not guarantee to satisfy budget and round-lot constraints [19]. For satisfying 

remaining constraints, each of the solution in the initial population is repaired using proposed repair 

mechanism. It is important to generate approximately equal number of candidate solutions for each 

feasible cardinality from k1 to k2. This allows a better exploration of search space by an evolutionary 

process. Hence, population size depends upon k2 − k1. 

Step 3: Candidate generation: 

Effective candidate generation forms the most important part of any evolutionary algorithm. This 

step directly influences exploration and exploitation capabilities of the algorithm. In the past studies, a 

stream of research is concentrated on developing new candidate generation methods in evolutionary 

computation. proposed Laplace crossover operator and power mutation operator for real-coded genet-

ic algorithms. They established their superiority over well-known genetic operators for twenty 

benchmark global optimization problems. Later, Khoo [8] modified Laplace crossover operator using 

bounded exponential distribution that not only has better search capability but also produces offspring 

solutions under variable bounds. 

 

4 Research Findings 

In this section, research findings based on the application of the proposed research model in the 

field of decision-taking and decision-making in selecting the desired investment combination are pre-

sented . 

4.1 Decision-Taking 

Using knowledge analysis, inputs, and outputs affecting the financial efficiency of companies were 

identified. Moreover, by employing Delphi survey and Fuzzy DEMATEL, inputs and outputs were 

refined and as part of evaluating financial efficiency based on mathematical modeling data envelop-

ment analysis, efficient companies were identified as justified investment options in the decision-

taking stage. During the performance appraisal, companies with the efficiency rate of 1 or %100 were 

classified as efficient companies. The assumption was that with the inputs used, it was not possible to 

produce more outputs [4]. Other companies with a financial efficiency rating of less than 1 or lower 

than 100% were classified as inefficient companies.  

According to Table 2, efficient companies in the present research, in comparison with other com-

panies, were selected by relying on Meghwani and Thakur [12] model as justified investment options 

or justified initial environment or decision-taking, and were classified as reliable companies in the 

final decision-making to determine the optimal composition of investment and are therefore picked 

from among 183 selected companies 

 : 
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Table 2: Financially efficient companies or primary justified points in decision taking  

Code Firm Name Row Code Firm Name Row Code Firm Name Row 

147 Bank Parsian 29 64 Siman Dorud 15 7 Iran Yasa 1 

148 Bank Pasargad 30 78 Khak Chini Iran 16 9 Bama 2 

150 Bank Dei 31 91 Qand Piranshahr 17 10 Behnoosh 3 

151 Bank Saman 32 94 Faravari Mavad Mada-

ni 

18 15 Palayesh Naft 

Isfahan 

4 

154 Bank Gardeshgari 33 97 Fulad Amirkabir 

Kashan 

19 16 Palayesh Naft 

Tabriz 

5 

161 Sarmayegozari Sanduq 34 99 Qand Isfahan 20 17 Petroshimi Khark 6 

169 Bimeh Dei 35 100 Qand Qazvin 21 24 Iran Tire 7 

177 Petroshimi Pars 36 111 Kashi Pars 22 26 Lent Tormoz 8 

178 Petroshimi Jam 37 125 Sina Daru 23 34 Daru Exir 9 

179 Petroshimi Zagros 38 134 Madani Amlah Iran 24 41 Zoqalsang Negin 10 

180 Petroshimi Khorasan 39 135 Madani Damavand 25 48 Saipa Dizel 11 

181 Petroshimi Isfahan 40 136 Chador Melo 26 49 Saipa Shisheh 12 

182 Petroshimi Qadir 41 141 Naft Behran 27 57 Siman Ilam 13 

183 Petroshimi Amirkabir 42 145 Post Bank Iran 28 59 Siman Behbahan 14 

 

At this stage of the analysis, i.e. the second step, namely decision-making and, in other words, the 

selection of the optimal combination or portfolio of investment based on real constraints among fi-

nancially efficient companies as the initial justified environment, will be addressed. In this regard, 

first, the investment criteria were determined. Then the investment constraints were determined, and 

afterward, the multi-criteria optimization model was defined. The model was addressed and discussed 

based on hyperactive algorithms and the response sensitivity analysis. It should be noted that this 

modeling was inspired by the main idea in the Markowitz [11] mean-variance model . 

 

4.2 Return Calculating 

Using the background of research, including studies conducted by Roy and Shijin [15], Ban et al. 

[3] and Kubota and Takehara [9], the return criterion as one of the most important indicators affecting 

capital decision making has been selected and in calculating the average return, the model of Kalayci 

et al [7] was used as follows, where R represents the average stock return during the studies period. 

The original single objective MV model can also be rewritten as to maximize the return for a given 

level of risk. A portfolio obtained by solving model mentioned in paper by taking into consideration 

of minimum risk for a given level of return or a maximum return for a given level of risk is called 

efficient portfolio. However, to find an efficient portfolio, it is necessary to know either the level of 

risk that the investor can endure, or the desired return defined by the investor. In fact, it may not be 

quite possible in real world cases. So, to find the efficient portfolio among various combinations of 

assets in the solution space, instead of considering a single objective, researchers must consider all 

objectives at once. Therefore, the researchers [3, 7, 12] transformed the single-objective model into a 

multi-objective model. However, the used equation for calculating risk proposed by kalayci et al. [7] 

has been used before by some other researchers and their study report satisfying results.   

 

R=√(1+
r1

100
) (1+

r2

100
) … (1+

rn

100
)

n

                                                                                                    (2) 

To calculate the average return, the geometric mean technique was used and, in this regard, r1, …, rn 

represents the real return of stocks during the first to nth period. In this regard, the one-year perfor-

mance ending  20 March 2019 for the companies under review was examined for a 12-month period. 
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Moreover, to calculate the return, we examined stock price changes compared to previous years.  

 

4.3 Risk calculation 

For this study, Kalayci et al. [7] model was employed and the risk criterion was calculated based on 
stock price changes using the following formula : 

σ = √
1

n-1
∑ (ri - E(r) )21

i = 0                                                                                      (3) 

Based on our calculations, the risk and monthly returns of investment options are summarized as 

described in Table 3 

 

Table 3: Summary of Risk Results and Monthly Returns  
Risk Return Code Row Risk Return Code Row Risk Return Code Row 

0.107 1.002 147 29 0.246 1.013 64 15 0.179 1.006 7 1 

0.065 1.004 148 30 0.137 1.000 78 16 0.277 1.023 9 2 

0.265 0.997 150 31 0.180 1.031 91 17 0.127 1.003 10 3 

0.301 1.010 151 32 0.258 1.015 94 18 0.239 1.011 15 4 

0.090 1.000 154 33 0.172 1.000 97 19 0.266 1.011 16 5 

0.118 1.012 161 34 0.185 1.002 99 20 0.438 0.880 17 6 

0.095 1.006 169 35 0.133 1.003 100 21 0.212 1.035 24 7 

0.368 1.012 177 36 0.260 1.000 111 22 0.192 1.026 26 8 

0.173 1.009 178 37 0.043 1.004 125 23 0.190 1.004 34 9 

0.230 1.016 179 38 0.130 1.000 134 24 0.212 1.023 41 10 

0.165 1.018 180 39 0.412 1.013 135 25 0.432 0.994 48 11 

0.580 1.003 181 40 0.171 1.001 136 26 0.221 1.018 49 12 

0.377 1.018 182 41 0.121 1.009 141 27 0.297 1.005 57 13 

0.167 1.000 183 42 0.200 1.000 145 28 0.271 1.014 59 14 

In addition to the results, the description of risk findings, return and stock price for efficient com-

panies is shown under Table 4 as follows 

 

Table 4: Description of risk, return and latest stock price in efficient companies  

Kurtosis Skewness Std. devia-

tion 

Median Average Maximum Minimum Symbol Variable 

27.276 -4.650 0.022 1.006 1.006 1.035 0.880 R Return 

1.625 1.118 0.111 0.196 0.221 0.580 0.043 σ Risk 

5.211 1.979 12395 7812 11671 61344 754 P Price 

 

4.4 Investment Combination Modelling 

At this stage of decision-making to determine the optimal composition of investment based on the 

initial justified environment or in other words the decision taking in evaluating the financial efficiency 

of selected companies and introducing efficient companies as justified investment options, modeling 

of the composition of capital was employed as follows: 1) definition of the decision variable 2) defini-

tion of the objective function 3) identification of real constraints in decision making and 4) aggrega-

tion of the above as the final model. 

Step 1: Defining the decision variable: 

While following similar research by Kalayci et al. [7], in this study, the decision-making variable con-

stituted the relative investment in an efficient company ith (for each of the 42 companies that were 

ultimately identified and selected as efficient companies and a viable investment option in the initial 

environment or decision-taking phase) that was defined as follow:  
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Xi: the amount of relative investment in the desired efficient company, i: 1, 2, …, 42. 

Step 2: Defining the objective functions: 

Based on the two criteria of risk and return, the objective functions were defined using Markowitz 

[11] mean-variance model as follows: 

Max(R)=R1X1+ R2X2+…+ RnXn                                                                                                                                                                  (4) 

Min(δ)= δ1X1+ δ2X2+…+ δnXn     

In this regard, Ri represents the average monthly return of the ith efficient company, Xi means the 

relative monthly investment in the ith efficient company, while δi represents the average monthly risk 

of the efficient company ith, R stands for the average monthly return on investment inefficient com-

panies and finally, δ shows the average risk of investing in the efficient companies. Here the investor 

seeks to select a combination of investments to simultaneously have the highest return and lowest 

risk. By placing the performance values in Table 3, the objective functions of the first and second 

models for optimizing the investment mix are as follows: 

Max (R) = 1.006 X1
 + 1.023 X2 + 1.003 X3 + 1.011 X4 +1.011 X5 +0.880 X6 +1.035 X7 + 1.026 X8 

+1.004 X9 +1.023 X10 +0.994 X11 +1.018 X12 +1.005 X13 +1.014 X14 +1.013 X15 +1.000 X16 +1.031 

X17 +1.015 X18 +1.000 X19 +1.002 X20 +1.003 X21 +1.000 X22 +1.004 X23 +1.000 X24 +1.013 X25 

+1.001 X26 +1.009 X27 +1.000 X28 +1.002 X29 +1.004 X30 +0.997 X31 +1.010 X32 +1.000 X33 +1.012 

X34 +1.006 X35 +1.012 X36 +1.009 X37 +1.016 X38 +1.018 X39 +1.003 X40 +1.018 X41 +1.000 X42 

Min (δ) = 0.179 X1
 + 0.277 X2 + 0.127 X3 +0.239 X4 +0.266 X5 +0.438 X6 +0.212 X7 +0.192 X8 

+0.190 X9 +0.212 X10 +0.432 X11 +0.221 X12 +0.297 X13 +0.271 X14 +0.246 X15 +0.137 X16 +0.180 

X17 +0.258 X18 +0.172 X19 +0.185 X20 +0.133 X21 +0.260 X22 +0.043 X23 +0.130 X24 +0.412 X25 

+0.171 X26 +0.121 X27 +0.200 X28 +0.107 X29 +0.065 X30 +0.265 X31 +0.301 X32 +0.090 X33 +0.118 

X34 +0.095 X35 +0.368 X36 +0.173 X37 +0.230 X38 +0.165 X39 +0.580 X40 +0.377 X41 +0.167 

X42                                   (5)  

Step 3: Applying the real constraints: 

Considering the real limitations in selecting the optimal portfolio or investment combination, 

achieving the goals of maximizing returns and minimizing risk in choosing the investment combina-

tion, the final decision-making environment in selecting the optimal combination based on the defined 

investment constraints; these constraints are based on the conditions of the decision-maker and vary 

from person to person. Therefore, following the example of Kalayci et al [7], here we will refer to 

some of these limitations as an example: 

a) Investment composition constraint: This constraint is affected by the type of definition of varia-

bles as a relative quantity and a relative investment in the investment portfolio or relative share of 

each efficient company from 1 investment unit, which when the relative investment is zero in other 

companies, the share of ith efficient company is equal to 1 and considering the condition that calls for 

real decision-making variables being non-negative as a relatively passive quantity, it is defined as 

follows: 

0 ≤ Xi ≤ 1, i: 1, 2…, 42                                                                       (6) 

b) Investment budget constraint: This limitation is defined based on the present or an available 

budget as a ceiling or maximum amount of investment by the natural or legal person and therefore 

varies from person to person.  

Here, based on the general assumption of limitations in investment budgets following Meghwani 

and Thakur [12] model, it is assumed that the investor seeks to buy a share that is relatively divided 

between different stocks.  

In practice, it’s possible to calculate the number of final shares when the Rial budget is determined 

with due regard to the division of that budget on the average price of a share with the relevant optimal 
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mix. This number will be multiplied at the relevant optimal mix and the share of each company be-

comes clear. When the figure is multiplied at the daily price of the said shares, it will give us the 

amount of share purchased from each company in Rial in the optimal composition. Accordingly, the 

budgetary limitations are generally defined per share as follows: 

X1+ X2+…+ X42 = 1                                                                                    (7) 

By placing the defined variables for 42 efficient companies, the above-mentioned budget limita-

tions will be as follow: 

X1
 + X2 + X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10 +X11 +X12 +X13 +X14 +X15 +X16 +X17 +X18 +X19 

+X20 +X21 +X22 +X23 +X24 +X25 +X26 +X27 +X28 +X29 +X30 +X31 +X32 +X33 +X34 +X35 +X36 +X37 +X38 

+X39 +X40 +X41 +X42 = 1                                                                                        

       (8) 

c) Minimum return corresponding bank interest constraint:  

This limitation is based on the minimum risk-free return, for example, the return on investment in 

a one-year bank deposit, which is defined at 15% per annum and 1.25% per month according to the 

Central Bank. The basis of this portfolio constraint should be such that the return on investment is not 

less than the risk-free return: 

R1X1+ R2X2+…+ R42X42 ≥ 1.0125                                                                                  (9) 

By substituting the average monthly return from Table (3) in the above relation, this limitation is 

defined as follows: 

1.006 X1
 + 1.023 X2 + 1.003 X3 +1.011 X4 +1.011 X5 +0.880 X6 +1.035 X7 +1.026 X8 +1.004 X9 

+1.023 X10 +0.994 X11 +1.018 X12 +1.005 X13 +1.014 X14 +1.013 X15 +1.000 X16 +1.031 X17 +1.015 

X18 +1.000 X19 +1.002 X20 +1.003 X21 +1.000 X22 +1.004 X23 +1.000 X24 +1.013 X25 +1.001 X26 

+1.009 X27 +1.000 X28 +1.002 X29 +1.004 X30 +0.997 X31 +1.010 X32 +1.000 X33 +1.012 X34 +1.006 

X35 +1.012 X36 +1.009 X37 +1.016 X38 +1.018 X39 +1.003 X40 +1.018 X41 +1.000 X42 ≥ 

1.0125                        (10) 

D) Minimum return corresponding market interest:  

This limitation is determined based on the average performance in the capital market and is based 

on the assumption that the overall investment composition should be determined in such a way that 

the minimum return on investment composition is not lower than the average return in the market.  

R1X1+ R2X2+…+ R42X42 ≥ R̅                                                                                 (11) 

Therefore, considering the industries corresponding to efficient companies, for each industry, there 

will be a limitation as follows and with due consideration of the real data: 

1.006 X1
 + 1.023 X2 + 1.003 X3 +1.011 X4 +1.011 X5 +0.880 X6 +1.035 X7 +1.026 X8 +1.004 X9 

+1.023 X10 +0.994 X11 +1.018 X12 +1.005 X13 +1.014 X14 +1.013 X15 +1.000 X16 +1.031 X17 +1.015 

X18 +1.000 X19 +1.002 X20 +1.003 X21 +1.000 X22 +1.004 X23 +1.000 X24 +1.013 X25 +1.001 X26 

+1.009 X27 +1.000 X28 +1.002 X29 +1.004 X30 +0.997 X31 +1.010 X32 +1.000 X33 +1.012 X34 +1.006 

X35 +1.012 X36 +1.009 X37 +1.016 X38 +1.018 X39 +1.003 X40 +1.018 X41 +1.000 X42 ≥ 

1.006                         (12) 

e) Maximum risk limitation concerning the capital market: This limitation is determined based on 

the average performance in the capital market and is based on the assumption that the total investment 

composition should be determined in such a way that the maximum risk in the investment combina-

tion does not exceed the average risk in the capital market.  

δ1X1+ δ2X2+…+ δnXn ≤ δ̅                                                                                 (13) 

Therefore, this limitation will be defined according to the risk of companies and its average will be 

calculated concerning efficient companies according to the actual data: 

0.179 X1
 + 0.277 X2 + 0.127 X3 +0.239 X4 +0.266 X5 +0.438 X6 +0.212 X7 +0.192 X8 +0.190 X9 
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+0.212 X10 +0.432 X11 +0.221 X12 +0.297 X13 +0.271 X14 +0.246 X15 +0.137 X16 +0.180 X17 +0.258 

X18 +0.172 X19 +0.185 X20 +0.133 X21 +0.260 X22 +0.043 X23 +0.130 X24 +0.412 X25 +0.171 X26 

+0.121 X27 +0.200 X28 +0.107 X29 +0.065 X30 +0.265 X31 +0.301 X32 +0.090 X33 +0.118 X34 +0.095 

X35 +0.368 X36 +0.173 X37 +0.230 X38 +0.165 X39 +0.580 X40 +0.377 X41 +0.167 X42 ≤ 0.221    

                      (14) 

Step 4: Final model: 

Considering the definition of variables, objective functions and investment constraints, the final 

model of the optimal investment composition will be shown in Table 5: 

 

Table 5: Mathematical Model of Optimal Investment Composition  

The final model of the optimal combination of investment in efficient companies 

Xi: the amount of relative investment in the desired efficient company, i: 1, 2, …, 42 

Max (R) = 1.006 X1
 + 1.023 X2 + 1.003 X3 + 1.011 X4 +1.011 X5 +0.880 X6 +1.035 X7 + 1.026 X8 +1.004 X9 +1.023 X10 

+0.994 X11 +1.018 X12 +1.005 X13 +1.014 X14 +1.013 X15 +1.000 X16 +1.031 X17 +1.015 X18 +1.000 X19 +1.002 X20 +1.003 

X21 +1.000 X22 +1.004 X23 +1.000 X24 +1.013 X25 +1.001 X26 +1.009 X27 +1.000 X28 +1.002 X29 +1.004 X30 +0.997 X31 

+1.010 X32 +1.000 X33 +1.012 X34 +1.006 X35 +1.012 X36 +1.009 X37 +1.016 X38 +1.018 X39 +1.003 X40 +1.018 X41 +1.000 

X42 

Min (δ) = 0.179 X1
 + 0.277 X2 + 0.127 X3 +0.239 X4 +0.266 X5 +0.438 X6 +0.212 X7 +0.192 X8 +0.190 X9 +0.212 X10 

+0.432 X11 +0.221 X12 +0.297 X13 +0.271 X14 +0.246 X15 +0.137 X16 +0.180 X17 +0.258 X18 +0.172 X19 +0.185 X20 +0.133 

X21 +0.260 X22 +0.043 X23 +0.130 X24 +0.412 X25 +0.171 X26 +0.121 X27 +0.200 X28 +0.107 X29 +0.065 X30 +0.265 X31 

+0.301 X32 +0.090 X33 +0.118 X34 +0.095 X35 +0.368 X36 +0.173 X37 +0.230 X38 +0.165 X39 +0.580 X40 +0.377 X41 +0.167 

X42  

S. T: 

0 ≤ Xi ≤ 1 , i: 1, 2…, 42 

X1
 + X2 + X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10 +X11 +X12 +X13 +X14 +X15 +X16 +X17 +X18 +X19 +X20 +X21 +X22 +X23 +X24 

+X25 +X26 +X27 +X28 +X29 +X30 +X31 +X32 +X33 +X34 +X35 +X36 +X37 +X38 +X39 +X40 +X41 +X42 = 1 

1.006 X1
 + 1.023 X2 + 1.003 X3 +1.011 X4 +1.011 X5 +0.880 X6 +1.035 X7 +1.026 X8 +1.004 X9 +1.023 X10 +0.994 X11 

+1.018 X12 +1.005 X13 +1.014 X14 +1.013 X15 +1.000 X16 +1.031 X17 +1.015 X18 +1.000 X19 +1.002 X20 +1.003 X21 +1.000 

X22 +1.004 X23 +1.000 X24 +1.013 X25 +1.001 X26 +1.009 X27 +1.000 X28 +1.002 X29 +1.004 X30 +0.997 X31 +1.010 X32 

+1.000 X33 +1.012 X34 +1.006 X35 +1.012 X36 +1.009 X37 +1.016 X38 +1.018 X39 +1.003 X40 +1.018 X41 +1.000 X42 ≥ 

1.0125                                                                                                                                                                                       

1.006 X1
 + 1.023 X2 + 1.003 X3 +1.011 X4 +1.011 X5 +0.880 X6 +1.035 X7 +1.026 X8 +1.004 X9 +1.023 X10 +0.994 X11 

+1.018 X12 +1.005 X13 +1.014 X14 +1.013 X15 +1.000 X16 +1.031 X17 +1.015 X18 +1.000 X19 +1.002 X20 +1.003 X21 +1.000 

X22 +1.004 X23 +1.000 X24 +1.013 X25 +1.001 X26 +1.009 X27 +1.000 X28 +1.002 X29 +1.004 X30 +0.997 X31 +1.010 X32 

+1.000 X33 +1.012 X34 +1.006 X35 +1.012 X36 +1.009 X37 +1.016 X38 +1.018 X39 +1.003 X40 +1.018 X41 +1.000 X42 ≥ 

1.006                                                                                                                                                                                              

0.179 X1
 + 0.277 X2 + 0.127 X3 +0.239 X4 +0.266 X5 +0.438 X6 +0.212 X7 +0.192 X8 +0.190 X9 +0.212 X10 +0.432 X11 

+0.221 X12 +0.297 X13 +0.271 X14 +0.246 X15 +0.137 X16 +0.180 X17 +0.258 X18 +0.172 X19 +0.185 X20 +0.133 X21 +0.260 

X22 +0.043 X23 +0.130 X24 +0.412 X25 +0.171 X26 +0.121 X27 +0.200 X28 +0.107 X29 +0.065 X30 +0.265 X31 +0.301 X32 

+0.090 X33 +0.118 X34 +0.095 X35 +0.368 X36 +0.173 X37 +0.230 X38 +0.165 X39 +0.580 X40 +0.377 X41 +0.167 X42 ≤ 0.221 

      

 
 
4.5 Stock Portfolio Optimization 

To adopt the desired option in capital decision making, at this stage of analysis, by relying on the 

genetic algorithm and the following meta-heuristic algorithm, we sought to optimize the stock portfo-

lio in the form of determining the optimal investment composition of efficient companies to achieve 

maximum average returns. At the same time, the lowest risk and real limitations in decision-making 

were taken into consideration. 

Step 1: optimization algorithm: 

In this regard, the correction mechanism used in studies such as those of Ban et al. [3], Kuehn et 

al. [10] and Sen et al [17] have been developed to manage budget limitations and budget ceiling. An-
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other corrective mechanism for considering the amount of budget Investment, capability, and ceiling 

constraints in the research of Ban et al. [3] have been developed and the algorithm used is shown in 

Table 6: 

 

  Table 6: The Meta-Heuristic Algorithm for Optimizing Stock Composition [3] 

Modified algorithm of Ban et al. [3]  in stock portfolio optimization 

Proposed repair mechanism 

rocedure Repair(ω, ϑ)  

δ ← 0  

Inz = {i|ωi > 0}  

ri = (ωi mod ϑi)                    ∀i ϵ Inz   

ILBV = {i|ωi − ri < li}  

if  |ILBV| = 0     then    

ωi ← ωi − ri  

else  

ωi ← ωi + (ϑi − ri)          ∀i ϵ ILBV     

ωi ← ωi − (ωi mod ϑi)          ∀i ϵ Inz     

end if  

β = ∑ ωiiϵ Inz
  

if β > 1 then   

ai ← li + ϑi − (li mod ϑi)          ∀i ϵ Inz     

ωi ← ai + ϑi +
ωi−ai

∑ (ωi−ai)iϵ Inz

(1 −

∑ aiiϵ Inz
)          ∀i ϵ Inz     

else  

ai ← ui − (ui mod ϑi)          ∀i ϵ Inz     

ωi ← ai −
ai−ωi

∑ (ai−ωi)iϵ Inz

(∑ aiiϵ Inz
− 1)          ∀i ϵ Inz     

end if  

ri = (ωi mod ϑi)                    ∀i ϵ Inz   

δ ← ∑ riiϵ Inz
  

I = {i|δ > ϑi}  

ϑmin ← min{ϑi| i ϵ I}  

Choose an index k from {i | ϑi = ϑmin ∶ i ϵ I}  

ID ← 0  

while δ ≥ ϑmin do  

I ← I\ID  

if ωk + ϑmin ≤ uk    then  

δ ← δ − ϑmin  

ωk ← ωk + ϑmin  

else  

I ← I\{k}  

ID ← ID ∪ {k}  

end if  

I ← {i|δ > ϑi}  

ϑmin ← min{ϑi | i ϵ I}  

Choose an index k from {i | ϑi = ϑmin ∶ i ϵ I}  

end while  

end procedure      

 

Step 2: Determining the optimization parameters: 

Relying on the meta-heuristic algorithm and using the data mining process of the genetic algo-

rithm, the optimization parameters including the number of generations, the number of iterations, base 

population, etc were defined as follows.  

In this research, a binary genetic algorithm was used. In other words, the genetic operation was not 

applied directly on the variables themselves, but the coding method in base 2 was used. Also, the pro-

duction of the first generation was carried out randomly. The initial population size used in this study 

was 100. The condition of stopping in the algorithm used was aimed at keeping the objective function 

constant for to allow reaching the maximum number of generations, which was considered 200 in this 

method. The number of elite chromosomes that entered the next generation was estimated at 3.5% of 

the population. In order to scale the value of the fitness function, a ranking scale was employed. The 

selection Tournament method was adopted to determine how to select chromosomes. The intersection 

rate, which represents the percentage of the population affected by the intersection operator, was con-

sidered to be 0.8 at best in the selection of the portfolio. The jump rate, which represents the percent-

age of the population affected by the jump operator, was assumed to be 0.1. Using the above parame-

ters and assuming equal investment in all companies, (0.0238) as a justified starting point in the 

MATLAB software and the following numbers z1, z2, z3, z4, z5, z6 which played a major role in the 

fitness function, was calculated. 

Step 3: simulation: 

Using MATLAB software, the formulated model and the modified algorithm were performed with 

each of the three functions of the simulation process, and after 250 generations of simulation for the 

selected operators, the simulation operation was stopped. A summary of the performance for each 



Sepehri et al.  

 
 

 

 

Vol. 8, Issue 2, (2023) 

 

Advances in Mathematical Finance and Application  

 

[657] 

 

stimulation is presented below and in the next section, the best answer is shown based on the calcula-

tions performed. 

A) Selecting the optimal portfolio with the Tournament genetic operator 

Following the assigned steps and by determining the assumptions and parameters, the algorithm 

can be simulated by MATLAB software with a repetition rate of 250 generations and an initial popu-

lation of 150 by default. At this stage, using MATLAB software, the proposed meta-heuristic algo-

rithm with the Tournament operator was used and simulation was carried out to build an optimal port-

folio. Fig. 2 illustrates the rate of change of the fitting function in 250 generations. 

 

Fig. 2: Tournament Performance Changing Trend in Each Generation of Simulation. 

 

 
Fig. 3: Intergenerational Interval in The Tournament Operator. 

 

Fig. 4: The Best and Worst Answer and the Average Score in the Tournament Operator. 
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Fig. 5: The final Chromosome in the Tournament Operator. 

 

Accordingly, Fig. 3 illustrates the interval between each generation of the proposed genetic algo-

rithm compared to the previous generation of answers over 250 generations. Moreover, Fig. 4 shows 

the amount of best, worst, and average value of the fit function in each generation, using the genetic 

algorithm with the Tournament operator function. Fig. 5 depicts the selected chromosome (optimal 

portfolio) in the genetic algorithm after 250 generations: 

 
 

B) Selecting the Optimal Portfolio with the Roulette Wheel Genetic Operator 
Following the assigned steps and by determining the assumptions and parameters in the process of 

implementing the genetic algorithm simulation, the algorithm simulation by MATLAB software with 

a repetition rate of 250 generations and an initial population of 150 was carried out by default. Using 

MATLAB software, the proposed meta-heuristic algorithm with Roulette Wheel operator is employed 

and Fig. 6 illustrates the extent of changes of the fitting function corresponding to 250 generations. 

 

 
Fig. 6: The process of Changing the Performance of the Roulette Wheel Per Generation of Simulation of 

Answers. 

 

Accordingly, Fig. 7 illustrates the space between each generation of the proposed genetic algo-

rithm compared to the previous generation of responses with the Roulette Wheel operator over 250 

generations: 
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Fig. 7: Intergenerational Distance in the Roulette Wheel Operator. 

 

Besides, Fig. 8 shows the best, worst, and an average value of the fitting function in each genera-

tion, using the genetic algorithm with the Roulette Wheel operator function: 

 

 

 

 

 

 

 

Fig. 8: The Best and Worst Answer and the Average Score in Roulette Wheel Operator. 

 

Finally, in Fig. 9, the selected chromosome (optimal portfolio) is depicted using the genetic algo-

rithm and the Roulette Wheel operator after 250 generations: 

 

Fig. 9: The final chromosome in the Roulette Wheel operator. 
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C) Comparison of the performance of R&T genetic operators 
According to the values of return and risk obtained in the simulation using two operators selected 

Tournament and Roulette Wheel, it is clear that the return of the Tournament operator is somewhat 

better but has a higher level of risk. In any case, based on the performance efficiency of the first oper-

ator is better and the performance of the two algorithms is compared in Fig. 10: 

 

Fig. 10: Comparing the efficiency of dual operators. 
 

Step 4: Decision making: 

Finally, according to a more efficient operator, i.e. the Tournament operator, the optimal decision-

making and in other words, the optimal combination of investment or the optimal portfolio of stocks 

were obtained in the form of Table 7: 

 

Table 7: Deciding on the choice of investment mix  
Answer Code Variable Answer Code Variable Answer Code Variable 

0 147 X29 0 64 X15 0.085 7 X01 

0 148 X30 0 78 X16 0 9 X02 

0 150 X31 0.092 91 X17 0 10 X03 

0 151 X32 0 94 X18 0 15 X04 

0 154 X33 0 97 X19 0 16 X05 

0.072 161 X34 0 99 X20 0 17 X06 

0.103 169 X35 0 100 X21 0.105 24 X07 

0 177 X36 0 111 X22 0.070 26 X08 

0.099 178 X37 0 125 X23 0 34 X09 

0 179 X38 0 134 X24 0.101 41 X10 

0.098 180 X39 0 135 X25 0 48 X11 

0 181 X40 0 136 X26 0.078 49 X12 

0 182 X41 0.097 141 X27 0 57 X13 

0 183 X42 0 145 X28 0 59 X14 

Min Risk: 0.169 

Max Return: 1.018 
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4.6 Sensitivity Analysis  

To have relative confidence in the reliability of the simulation results, at this stage of the analysis 

of the findings, the sensitivity of the answers was analysed based on the evaluation of changes in the 

investment model. This analysis is based on estimating the confidence interval and also examining the 

change in constraints and examining its impact on the answers. 

a) Estimation of Confidence Level   
In this form, sensitivity analysis is a parametric (numerical) evaluation to re-examine the research 

model and its results. In the sensitivity analysis, the reliability of the results was changed from 95% to 

99% confidence level and the optimal stock portfolio was obtained again. The results showed the 

changes made at this level of confidence. Fig. 11 shows the selected chromosomes at both levels of 

confidence after 250 generations. As illustrated in Table 7, the value of the fit function corresponds to 

a return of 1.018 and a risk level of 0.169, indicating no change in the event of changes in the confi-

dence range. 
99% of confidence level 95% of confidence level 

 
 

Fig. 11: Selective Chromosomes at Two Levels of Reliability. 

b) Return Targeting 
In this state of analysis, sensitivity analysis is performed to eliminate the second objective func-

tion, i.e. risk minimization, and the optimization of the investment combination model based on max-

imizing the return on investment. In other words, the decision-making model is optimized as a single-

objective function. The optimization results in this step are summarized in Table 8. 

 

Table 8: Optimal Composition of Return-Based Investment  
Answer Code Variable Answer Code Variable Answer Code Variable 

0 147 X29 0.075 64 X15 0.024 7 X01 

0 148 X30 0 78 X16 0.054 9 X02 

0 150 X31 0.027 91 X17 0 10 X03 

0.026 151 X32 0.029 94 X18 0.053 15 X04 

0 154 X33 0 97 X19 0.062 16 X05 

0.048 161 X34 0 99 X20 0 17 X06 

0.060 169 X35 0 100 X21 0.039 24 X07 

0.049 177 X36 0 111 X22 0.023 26 X08 

0.051 178 X37 0 125 X23 0 34 X09 

0.048 179 X38 0 134 X24 0.035 41 X10 

0.061 180 X39 0.038 135 X25 0 48 X11 

0 181 X40 0 136 X26 0.060 49 X12 

0.039 182 X41 0.036 141 X27 0 57 X13 

0 183 X42 0 145 X28 0.062 59 X14 

Min Risk: 0.231 

Max Return: 1.027 
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The evaluation results in comparison with the initial model show that the level of total return has 

increased from 1.018 to 1.027 but based on the return criterion, the investment risk has increased from 

0.169 to 0.231. In other words, the return on investment has increased by 0.88%, but by ignoring the 

risk, the total risk level has increased by 36.69%. 

 

c) Risk targeting 
 

At this stage, a sensitivity analysis was carried out to eliminate the first objective function, i.e. 

maximizing returns, and optimizing the investment mix model based on minimizing investment risk. 

In other words, the decision-making model is optimized as a single-objective function. The optimiza-

tion results in this step are summarized in Table 9 as follows: 

 

Table 9: The Optimal Combination of Risk-Based Investment  
Answer Code Variable Answer Code Variable Answer Code Variable 

0 147 X29 0 64 X15 0.085 7 X01 

0 148 X30 0 78 X16 0 9 X02 

0 150 X31 0.092 91 X17 0 10 X03 

0 151 X32 0 94 X18 0 15 X04 

0 154 X33 0 97 X19 0 16 X05 

0.028 161 X34 0 99 X20 0 17 X06 

0.037 169 X35 0 100 X21 0.105 24 X07 

0 177 X36 0 111 X22 0.070 26 X08 

0.025 178 X37 0 125 X23 0 34 X09 

0 179 X38 0 134 X24 0.101 41 X10 

0.026 180 X39 0 135 X25 0 48 X11 

0 181 X40 0 136 X26 0.078 49 X12 

0 182 X41 0.097 141 X27 0 57 X13 

0.048 183 X42 0 145 X28 0 59 X14 

Min Risk: 0.152 

Max Return: 1.014 

 

The results of the evaluation in comparison with the initial model show that the level of total risk 

has decreased from 0.169 to 0.152 but based on the risk criterion, the return on investment has de-

creased from 1.018 to 1.014. In other words, the level of investment risk has decreased by 10.05 per-

cent, but by ignoring the return on decision-making, the total return has decreased by 0.39 percent. 

 

d) Elimination of Investment Requirements 
At this stage from sensitivity analysis, we removed the real constraints or investment requirements 

concerning risk and return and only considered the budget constraints and the relative definition of the 

share in investment and simultaneous targeting on return maximization and risk minimization. The 

optimization results at this stage are summarized in Table 10. 

The evaluation results in comparison with the initial model show that the level of total return has 

increased from 1.018 to 1.036 but without considering the requirements and expectations in invest-

ment, the investment risk has increased from 0.169 to 0.225. In other words, the level of investment 

risk has increased by 33.14 percent, but by ignoring the investor's expectations and investment re-

quirements according to the conditions of the capital market and risk-free investment in decision-

making, the total return has increased by 1.77 percent. Although in model-based optimization, in-

vestment in some efficient companies has been zero, in this case, investment in all companies has 

been more or less. 
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Table 10: Optimal Investment Composition Based on the Elimination of Investment Requirements. 
Answer Code Variable Answer Code Variable Answer Code Variable 

0.025 147 X29 0.035 64 X15 0.019 7 X01 

0.011 148 X30 0.025 78 X16 0.024 9 X02 

0.034 150 X31 0.010 91 X17 0.025 10 X03 

0.023 151 X32 0.037 94 X18 0.020 15 X04 

0.031 154 X33 0.030 97 X19 0.027 16 X05 

0.030 161 X34 0.018 99 X20 0.017 17 X06 

0.033 169 X35 0.012 100 X21 0.027 24 X07 

0.025 177 X36 0.025 111 X22 0.019 26 X08 

0.029 178 X37 0.011 125 X23 0.018 34 X09 

0.034 179 X38 0.034 134 X24 0.032 41 X10 

0.008 180 X39 0.023 135 X25 0.019 48 X11 

0.021 181 X40 0.031 136 X26 0.017 49 X12 

0.029 182 X41 0.030 141 X27 0.029 57 X13 

0.018 183 X42 0.033 145 X28 0.023 59 X14 

Min Risk: 0.225 

Max Return: 1.036 

 

5 Conclusions  

A review of the research literature shows that among the classic research issues in financial theory 

and operations research, the issue of portfolio optimization and the optimal combination of investment 

in assets can be seen in abundance. Investors, especially financial institutions such as banks, insurance 

companies, mutual funds, always deal with the problem of managing their budget and how to allocate 

them optimally to select the optimal portfolio of capital in the financial market. A pioneer in this field 

was Markowitz [11] who developed a portfolio model based on the mean-variance criterion in the 

context of a quadratic optimization problem with linear constraints. This quadratic model is defined to 

minimize the variance in the expected return, subject to the observance of constraints such as the 

composition of the investment and the investment budget. 

According to the proposed research model, after identifying inputs and outputs based on 

knowledge analysis and content analysis, refining the effective factors based on Delphi survey and 

fuzzy DEMATEL model and during the evaluation of financial efficiency with data envelopment 

analysis approach, companies with the relative size 1 or 100% in terms of percentage were considered 

as efficient companies. Whereas it is assumed that with the inputs employed, it was not possible to 

produce more outputs. Other companies that have a financial efficiency rating of less than 1 or less 

than 100% are considered inefficient companies. Based on the research results, efficient companies in 

this research were identified based on the proposed research model and by relying on the model of 

Meghwani and Thakur [12] as justified investment options and as a justified initial space or decision-

making, in comparison with other companies. In other words, these companies were identified and 

classified as reliable companies in the final decision-making. In the decision-making stage, based on 

the geometric average risk and return of efficient companies, the efficient companies were classified 

and according to the real constraints related to the budget, investors’ requirements and expectations 

compared to market performance and risk-free investment, the issue of decision making with regard to 

the composition of investment was determined and presented as a multi-objective model. 

Using a modified meta-heuristic algorithm and genetic algorithm and MATLAB software with du-

al operators, the investment combination was optimized. Finally, by eliminating the return or risk 

functions or eliminating the investment requirements and expectations and estimating the confidence 

intervals, the sensitivity of the answers was analyzed. The results showed that by eliminating the risk 
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criterion, the level of total return on decision-making increases, but the risk also increases to a greater 

extent. Elimination of the return criterion in optimization also showed that lower risk can be achieved 

as a whole, but the total return will be reduced in this case. Elimination of investment requirements 

and expectations also led to higher returns and more risk, but more companies became involved in 

optimal investment. 

The results showed that it’s possible to employ and use the financial efficiency results obtained 

based on data envelopment analysis while relying on the proposed research model as a viable invest-

ment option and proper initial space or decision-taking and determining the optimal investment com-

position. Accordingly, investment companies and financial analysts could employ this method to 

choose justified capital options and determine the desired composition of investment. The results of 

this study showed that the selection of the optimal investment combination is usually made from a 

group of listed companies in a specific industry or companies that are known as top companies. Con-

trary to tradition, this choice can be made through a two-step process (decision-taking and decision-

making). Based on the results of the research, it is recommended to investment companies and capital 

analysts, to rely on the evaluation of several criteria of financial efficiency and the application of data 

envelopment analysis model, to determine the initial justified scope of capital decisions and go for-

ward with the so-called decision-taking.   

Accordingly, capital market analysts and capital companies are advised, without relying on per-

sonal judgments and prejudices, to select and define a set of companies suitable for investment as 

efficient companies compared to all other possible companies. They are also advised to introduce 

companies that account for 100% of the measure of financial efficiency as justified investment op-

tions. Also, the research results based on simulation of multi-criteria investment model as well as the 

real constraints and further sensitivity analysis of the responses showed that the best answer with due 

note of both risk and return criteria in decision making for targeting and the real budgetary limitations, 

is expectations and requirements of investment. Accordingly, analysts in the capital market are ad-

vised to use the sensitivity analysis of investment combinations with due regard to the criteria of risk, 

return and change in requirements and expectations of investment. The following areas are suggested 

to researchers for further study and further improving the present study: 

• Identifying financial and non-financial performance factors affecting capital decisions based 

on knowledge analysis and refining them based on quantitative algorithms such as stepwise 

regression, search algorithms such as decision tree and comparing their explanatory power in 

the form of a comparative study. 

• Designing and application of expert system for decision taking and capital decision making in 

determining the optimal composition of investment based on data envelopment analysis ap-

proaches and mathematical simulation, algorithm and modelling employed in this research. 

• Decision-taking based on the assumption of geometric convexity and using logarithmic func-

tion to evaluate financial efficiency and capital decision based on branch algorithms and deci-

sion tree limit to select the optimal combination of justified space. 

• Decision-taking based on entropy theory to combine different metrics of financial perfor-

mance and market evaluation in order to rank companies and select top companies and finally 

use the supra-innovative algorithm in capital decision to select the desired investment combi-

nation. 

• Modelling the distinction between decision-taking and decision-making to determine the op-

timal composition of investment based on abnormal criteria and fluctuations in returns and 

considering macro-constraints in decision-making such as government economic policies. 
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