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Abstract. In this paper, a nonlinear deterministic mathematical model of ordinary differential 

equations has been formulated to describe the transmission dynamics of HSV-II.  The well 

possedness of the formulated model equations was proved and the equilibrium points of the model 

have been identified. In addition, the basic reproduction number that governs the disease 

transmission was obtained from the largest eigenvalue of the next-generation matrix. Both local 

and global stability of the disease free equilibrium and endemic equilibrium point of the model 

equation was established using basic reproduction number. The results show that, if the basic 

reproduction is less than one then the solution converges to the disease free steady state and the 

disease free equilibrium is locally asymptotically stable. On the other hand, if the basic 

reproduction number is greater than one the solution converges to endemic equilibrium point and 

the endemic equilibrium is locally asymptotically stable.  Also, sensitivity analysis of the model 

equation was performed on the key parameters to find out their relative significance and potential 

impact on the transmission dynamics of HSV-II. Finally, numerical simulations of the model 

equations are carried out using the software DE Discover 2.6.4 and MATLAB R2015b with 

ODE45 solver. The Results of simulation show that treatment minimizes the risk of HSV-II 

transmission from the community and the stability of disease free equilibrium is achievable when  

  ℜ0 < 1. 
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1. Introduction 

Sexually transmitted infections (STIs) are a major public health problem worldwide, 

affecting quality of life and causing serious morbidity and mortality. Herpes is caused by 

Herpes simplex virus (HSV) [9]. There are two types of herpes, herpes simplex type -I 

(HSV-I) and herpes simplex type -II (HSV-II). HSV-I is predominantly orally transmitted 

and it causes orolabial herpes (i.e., cold sores) and HSV-II is one of the most common 

sexually transmitted infections worldwide and it cause genital herpes. The majority of 

herpes simplex types -II infections are transmitted by persons who are unaware that they 

have the infection or who are asymptomatic when transmission occurs [10].  

Worldwide, an estimated 19.2 million new HSV-2 infections occurred among adults 

and adolescents aged 15-49 years in 2012 with the highest rates among younger age 

groups. HSV-2 is a lifelong infection and the estimated global HSV-2 prevalence of 11.3% 

translates into an estimated 417 million people with the infection in 2012. The prevalence 

of HSV-2 is highest in the African Region (31.5%), followed by the Region of the 

Americas (14.4%). Despite lower prevalence, in the South-East Asia and Western Pacific 
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Regions also harbour a large number of people with the infection due to the large 

populations of some countries in the region. The HSV-2 infection rate is consistently 

higher in females compared to males; there were an estimated 11.8 million new infections 

and 267 million prevalent infections among women in 2012 versus 7.4 million new and 

150 million prevalent infections among men. The higher infection rate among women is 

most likely due to their greater biological susceptibility to HSV-2 infection [15]. 

Mathematical models have been used extensively in research into the epidemiology of 

Herpes Simplex Virus-II to improve our understanding of the major contributing factors 

[12]. A lot of scholars developed a mathematical model to describe the dynamics of the 

disease that helped them to propose disease control mechanism and also described the 

transmission dynamics of the diseases. Some of them are [1, 11] developed and analyzed a 

deterministic model for the transmission dynamics of Herpes Simplex Virus-II. Mhlanga 

et al. [8] proposed and analysed a mathematical model for the spread of HSV-2 by 

incorporating all the relevant biological details and poor treatment adherence. The study 

demonstrates that though time dependent control will be effective on controlling new 

HSV-2 cases it may not be sustainable for certain time intervals. Recent studies such as [7, 

13] construct a mathematical model of HSV-II for vaccination and develop a vaccine 

against herpes simplex virus type 2 (HSV-2) to reduce the infection from the community. 

All the above studies have been developed a deterministic as well as stochastic 

mathematical model of Herpes Simplex Virus-II dynamics by subdividing the population 

into sub-classes of susceptible, infectious, vaccinated and recovered. But none of them 

considered Herpes Simplex Virus-II class. Therefore, that is motivated us to undertake this 

study to fulfill this gap.  

In this paper, mathematical model of Herpes Simplex Virus-II is formulated and 

analyzed. This paper is arranged as follows: in Section 2, we derive a model consisting of 

ordinary differential equations that describes the transmission dynamics of the diseases 

with the fundamental assumptions. In Section 3, well possedness of the model formulation, 

stability analysis of the equilibrium points and reproduction number are included. In 

Section 4, numerical simulation of the model equations are performed by conveying 

various sets of numerical values to the model parameters. In Section 5 sensitivity analysis 

of model parameters towards the reproduction number is carried out. Our conclusions are 

discussed in Section 6. 

2. Model formulation 

In this study the dynamical system of ordinary differential equations is formulated to 

show the dynamics of human population in the presence of Human Immunodeficiency 

Virus (HIV) and ART as combined treatments. This model is modification of the works 

done in [7]. This previous work is five compartmental model whereas the current study 

considered deterministic model that consists of eight compartments of human population. 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼 (𝑡) + 𝐻(𝑡) + 𝑅(𝑡). 

In formulating the model, the following assumptions are taken into consideration: 

(i) The susceptible individuals are increased by the recruitment of individuals into the 

population at a rate  Π. 

(ii) Individuals from susceptible sub compartment move to exposed sub compartment 

with per capita rate 𝜂 of becoming infectious (we recall that 1 𝜂⁄  is approximately 

the length of the latent period). 

(iii) Exposed individuals progress to the symptomatic sub compartment with 

probability  𝑝, and to asymptomatic sub compartment with probability  (1 − 𝑝). 

(iv) Asymptomatic individuals are typically assumed to be infectious at a reduced 

transmission rate  𝑞𝐴. 
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(v) The susceptible individuals are acquiring HSV-II infection with force of infection 

𝜆  which is given by 𝜆 = 𝛽[𝐼 + 𝑞𝐴] 𝑁⁄  where, 𝛽 is the contact rate and 𝑞 is the 

transmission coefficient for the asymptomatic individuals. If 𝑞 > 1  then, the 

asymptomatic infect susceptible more likely than infective. If 𝑞 = 1, then both 

asymptomatic and infective have equal chance to infect the susceptible, but if  𝑞 <
1 then, the infective have good chance to infect susceptible than asymptomatic. 

(vi) Some of the asymptomatic and symptomatic individual’s progress to Herpes 

simplex virus-II at a rate 𝜑, 𝜙 respectively and others recover naturally through 

body immune system at a rate 𝛾, 𝛼 respectively. 

(vii) The Herpes Simplex Virus-II individuals are treated at a rate 𝛿  and move to 

recovery sub compartment. 

(viii) The recovered individuals may lose immunity and return to the susceptible sub 

compartment with rate 𝜔. 

(ix) Individuals will die due to disease after reaching HSV-II stage with rate 𝜉. 

(x) In all compartments  𝜇 is the natural mortality rate of individuals. 

(xi) All parameters and variables of the model are considered to be positive. 

2.1 Description of variables and parameters 

The variables and parameters used in this model are introduced in Table 1 and 2. Their 

notations and descriptions are also included. 

Table 1. Description of Variables used in the model equations. 

Variable Description 

𝐍(𝐭) The total population at time t 

𝐒(𝐭) Susceptible Individuals 

𝐄(𝐭) Exposed Individuals 

𝐀(𝐭) Asymptomatic Individuals 

𝐈(𝐭) Symptomatic Individuals 

𝐇(𝐭) Herpes Simplex Virus-II Individuals 

𝐑(𝐭) Recovered Individuals 

Table 2. Description of parameters used in the model equations. 

Parameter Description 

𝚷 Recruited rate of susceptible individuals 

𝛃 Contact rate 

𝛈  Per capita rate of becoming infectious 

𝐩 Probability of exposed joining symptomatic 

𝐪 Transmission rate of asymptomatic 

𝛌 Force of infection 

𝛗 Progression rate from 𝐴 to  𝐻 

 𝛟 Progression rate from 𝐼 to  𝐻 

 𝛄 Recovery rate of asymptomatic 

 𝛂 Recovery rate of symptomatic 

𝛅 Treatment rate of HSV-II 

𝛚 Recovery rate of recovered individuals 

𝛍 Natural death rate  
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Taking into account of the above consideration, we then have the following transfer 

diagram of the model which is show in Figure 1. 

 

Figure 1. Schematic diagram for HSV-II model. 

The model is thus governed by the following system of non-linear ordinary differential 

equations: 

 𝑑𝑆 𝑑𝑡⁄ = Π − 𝜆𝑆 − 𝜇𝑆 + 𝜔𝑅                                 (1) 

 𝑑𝐸 𝑑𝑡⁄ = 𝜆𝑆 − (𝜂 + 𝜇)𝐸                             (2) 

 𝑑𝐴 𝑑𝑡⁄ = (1 − 𝑝)𝜂𝐸 − (𝜑 + 𝛾 + 𝜇)𝐴                          (3) 

 𝑑𝐼 𝑑𝑡⁄ = 𝑝𝜂𝐸 − (𝜙 + 𝛼 + 𝜇)𝐼                                   (4) 

 𝑑𝐻 𝑑𝑡⁄ = 𝜑𝐴 + 𝜙𝐼 − (𝛿 + 𝜇 + 𝜉)𝐻                                     (5) 

 𝑑𝑅 𝑑𝑡⁄ = 𝛾𝐴 + 𝛼𝐼 + 𝛿𝐻 − (𝜔 + 𝜇)𝑅                       (6) 

The non-negative initial conditions of the system of model equations (1)-(6) are denoted 

by   𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐴(0) = 𝐴0, 𝐼(0) = 𝐼0,   𝐻(0) =  𝐻0, 𝑅(0) = 𝑅0. 

3. Basic properties of the model 

3.1 Invariant region 

Lemma 3.1 (Boundedness) The non-negative solutions of the system of model equations 

(1)-(6) are bounded. That is the model variables 𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡), 𝐻(𝑡) and 𝑅(𝑡) 

are all bounded for all t [14]. 

Proof The dynamic system is uniformly bounded in the proper subset  Ω ⊂  ℝ+
6 , under 

consideration that the total population at any time   𝑡 is given by: 

𝑁 (𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝐻(𝑡) + 𝑅(𝑡 ) 

Differentiating 𝑁(𝑡) with respect to 𝑡 leads to; 

𝑑𝑁 𝑑𝑡⁄ = (𝑑𝑆 𝑑𝑡⁄ ) + (𝑑𝐸 𝑑𝑡⁄ ) + (𝑑𝐴 𝑑𝑡⁄ ) + (𝑑𝐼 𝑑𝑡⁄ ) + (𝑑𝐻 𝑑𝑡⁄ ) + (𝑑𝑅 𝑑𝑡⁄ ) (7) 
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By combining model equation (1)-(6) and (7), we can get 

𝑑𝑁 𝑑𝑡⁄ = 𝛱 − 𝜇𝑁 − 𝜉𝐻 (8) 

In the absence of mortality due to HSV-II (8) becomes 

𝑑𝑁 𝑑𝑡⁄ = 𝛱 − 𝜇𝑁 

Equivalently this inequality can be expressed as a linear ordinary differential inequality 

as [dN(t) dt⁄ ] + μN(t) ≤ Π giving general solution upon solving as   N(t) ≤ (Π μ⁄ ) +
𝑐𝑒−𝜇𝑡. But, the term 𝑁(0) denotes the initial values of the respective variable i.e., N(t) =
N(0)  at  t = 0 . Thus, the particular solution can be expressed as   N(t) ≤ (Π μ⁄ ) +
[N(0) − (Π μ⁄ )]𝑒−𝜇𝑡. Further, it can be observed that 𝑁(𝑡) → (Π μ⁄ ) as  𝑡 → ∞. That is, 

the total population size 𝑁(𝑡) takes off from the value N(0) at the initial time t = 0 and 

ends up with the bounded value (Π μ⁄ ) as the time 𝑡  grows to infinity. Thus, it can be 

concluded that 𝑁(𝑡) is bounded as  0 ≤ 𝑁(𝑡) ≤ (Π μ⁄ ). Thus, the feasible solution set of 

the system equation of the model enters and remains in the region: 

Ω = {(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) ∈ ℜ+
6  ∶  𝑁 ≤ Π 𝜇⁄ } 

The solution set of the dynamic system of the equation in the model is bounded in the 

region such that  Ω. This implies that the dynamic system of the model in the region is well 

posed epidemiologically and mathematically. Hence, it is sufficient to study the dynamics 

of the basic model in the region  Ω. 

3.2 Existence of the solution 

Lemma 3.2 (Existence) Solutions of the model equations (1)-(6) together with the initial 

conditions 𝑆(0) > 0, 𝐸(0) > 0, 𝐴(0) > 0, 𝐼(0) > 0, 𝐻(0) > 0, 𝑅(0) > 0 exist in ℝ+
6  

i.e., the model variables  𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡), 𝐻(𝑡)  and 𝑅(𝑡) exist for all t and will 

remain in  ℝ+
6 .  

Proof  The right-hand sides of the system of equations (1)-(6) can be expressed as 

follows: 

 𝑓1(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) = Π − 𝜆𝑆 − 𝜇𝑆 + 𝜔𝑅 

 𝑓2(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) = 𝜆𝑆 − (𝜂 + 𝜇)𝐸 

 𝑓3(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) = (1 − 𝑝)𝜂𝐸 − (𝜑 + 𝛾 + 𝜇)𝐴 

 𝑓4(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) = 𝑝𝜂𝐸 − (𝜙 + 𝛼 + 𝜇)𝐼 

 𝑓5(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) = 𝜑𝐴 + 𝜙𝐼 − (𝛿 + 𝜇 + 𝜉)𝐻 

 𝑓6(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) = 𝛾𝐴 + 𝛼𝐼 + 𝛿𝐻 − (𝜔 + 𝜇)𝑅 

According to Derrick and Groosman theorem, let Ω  denote the region Ω =
{(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) ∈ ℜ+

6 ∶ 𝑁 ≤ Π 𝜇⁄ }. Then equations (1)-(6) have a unique solution if 

 (𝜕𝑓𝑖) (𝜕𝑥𝑗)⁄ , 𝑖, 𝑗 = 1, 2, 3, 4, 5, 6 are continuous and bounded in Ω. Here, 𝑥1 = 𝑆, 𝑥2 =

𝐸, 𝑥3 = 𝐴, 𝑥4 = 𝐼, 𝑥5 = 𝐻 and  𝑥6 = 𝑅. The continuity and the boundedness are shown 

in Table 3. 

Thus, all the partial derivatives (𝜕𝑓𝑖) (𝜕𝑥𝑗),⁄ 𝑖, 𝑗 = 1, 2, 3, 4, 5, 6 exist, continuous and 

bounded in  Ω as shown in Table 3. Hence, by Derrick and Groosman theorem, a solution 

for the model (1)-(6) exists and is unique. 
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Table 3. Continuity and boundedness of the model solution. 

|(𝜕𝑓1) (𝜕𝑆)⁄ | = |−(𝜆 + 𝜇)| < ∞ 

|(𝜕𝑓1) (𝜕𝐸)⁄ | =  0 < ∞ 

|(𝜕𝑓1) (𝜕𝐴)⁄ | =  |−(𝛽𝑞 𝑁⁄ )| < ∞ 

|(𝜕𝑓1) (𝜕𝐼)⁄ | = |−(𝛽 𝑁⁄ )|  < ∞ 

|(𝜕𝑓1) (𝜕𝐻)⁄ | =  0 < ∞ 

|(𝜕𝑓1) (𝜕𝑅)⁄ | = 𝜔 < ∞. 

|(𝜕𝑓2) (𝜕𝑆)⁄ | = |𝜆| < ∞ 

|(𝜕𝑓2) (𝜕𝐸)⁄ | = |−(𝜂 + 𝜇)| < ∞ 

|(𝜕𝑓2) (𝜕𝐴)⁄ | = |(𝛽𝑞 𝑁⁄ )| < ∞ 

|(𝜕𝑓2) (𝜕𝐼)⁄ | =  |(𝛽 𝑁⁄ )| < ∞ 

|(𝜕𝑓2) (𝜕𝐻)⁄ | = 0 < ∞ 

|(𝜕𝑓2) (𝜕𝑅)⁄ | = 0 < ∞. 

|(𝜕𝑓3) (𝜕𝑆)⁄ | =  0 < ∞ 

|(𝜕𝑓3) (𝜕𝐸)⁄ | = |(1 − 𝑝)𝜂| < ∞ 

|(𝜕𝑓3) (𝜕𝐴)⁄ | = |−(𝜑 + 𝛾 + 𝜇)| < ∞ 

|(𝜕𝑓3) (𝜕𝐼)⁄ | =  0 < ∞ 

|(𝜕𝑓3) (𝜕𝐻)⁄ | =  0 < ∞ 

|(𝜕𝑓3) (𝜕𝑅)⁄ | = 0 < ∞. 

|(𝜕𝑓4) (𝜕𝑆)⁄ | =  0 < ∞ 

|(𝜕𝑓4) (𝜕𝐸)⁄ | =  |𝑝𝜂| < ∞ 

|(𝜕𝑓4) (𝜕𝐴)⁄ | = 0 < ∞ 

|(𝜕𝑓4) (𝜕𝐼)⁄ | =  |−(𝜙 + 𝛼 + 𝜇)| < ∞ 

|(𝜕𝑓4) (𝜕𝐻)⁄ | = 0 < ∞ 

|(𝜕𝑓4) (𝜕𝑅)⁄ | = 0 < ∞. 

|(𝜕𝑓5) (𝜕𝑆)⁄ | =  0 < ∞ 

|(𝜕𝑓5) (𝜕𝐸)⁄ | =  0 < ∞ 

|(𝜕𝑓5) (𝜕𝐴)⁄ | = |𝑝| < ∞ 

|(𝜕𝑓5) (𝜕𝐼)⁄ | = |𝜙| < ∞ 

|(𝜕𝑓5) (𝜕𝐻)⁄ | = |−(𝛿 + 𝜇 + 𝜉)| < ∞ 

|(𝜕𝑓5) (𝜕𝑅)⁄ | = 0 < ∞. 

|(𝜕𝑓6) (𝜕𝑆)⁄ | =  0 < ∞ 

|(𝜕𝑓6) (𝜕𝐸)⁄ | = 0 < ∞ 

|(𝜕𝑓6) (𝜕𝐴)⁄ | = |𝛾| < ∞                       

|(𝜕𝑓6) (𝜕𝐼)⁄ | = |𝛼|  < ∞ 

|(𝜕𝑓6) (𝜕𝐻)⁄ | = |𝛿| < ∞ 

|(𝜕𝑓6) (𝜕𝑅)⁄ | = |−(𝜔 + 𝜇)| < ∞. 

3.3 Positivity of the solution 

The solution of the system remains positive at any point in time t, if the initial values of all 

the variables are positive. 

Lemma 3.3 Let   Ω =  {(𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅) ∈ ℝ+
6 ; 𝑆0 > 0,   𝐸0 > 0, 𝐴0 > 0, 𝐼0 > 0, 𝐻0 >

0, 𝑅0 > 0}; then the solutions of {𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅} are positive for all  𝑡 ≥ 0. 

Proof Positivity is verified separately for each of the model 𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡), 𝐻(𝑡) 

and 𝑅(𝑡). 

Positivity of 𝑆(𝑡): The model equation (1) given by 𝑑𝑆 𝑑𝑡 = Π − 𝜆𝑆 − 𝜇𝑆 + 𝜔𝑅⁄  can be 

expressed without loss of generality, after eliminating the positive terms Π + 𝜔𝑅 which 

are appearing on the right-hand side, as an inequality as 𝑑𝑆 𝑑𝑡⁄ ≥ −[𝜆 + 𝜇]𝑆. Using 

variables separable method and on applying integration, the solution of the foregoing 

differentially inequality can be obtained as 𝑆(𝑡) ≥ 𝑆0[𝑒𝑥𝑝 − (𝜆 + 𝜇)𝑡]. Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent, i.e., 

the exponential function  [𝑒𝑥𝑝 − (𝜆 + 𝜇)𝑡] is a non-negative quantity. Hence, it can be 

concluded that  𝑆(𝑡) ≥ 0. 

Positivity of  𝐸(𝑡): The model equation (2) given by 𝑑𝐸 𝑑𝑡 = 𝜆𝑆 − (𝜂 + 𝜇)𝐸⁄  can be 

expressed without loss of generality, after eliminating the positive term [𝜆𝑆] which are 

appearing on the right hand side, as an inequality as 𝑑𝐸 𝑑𝑡⁄ ≥ [−(𝜂 + 𝜇)]𝐸 sing variables 



367                                E. Gurmu et al./𝐼𝐽𝑀2𝐶, 10 -04 (2020) 361-383. 

separable method and on applying integration, the solution of the foregoing differentially 

inequality can be obtained as  𝐸(𝑡) ≥ 𝐸0[𝑒𝑥𝑝 − (𝜂 + 𝜇)𝑡]. Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent, i.e., the 

exponential function   [𝑒𝑥𝑝 − (𝜂 + 𝜇)𝑡]  is a non-negative quantity. Hence, it can be 

concluded that  𝐸(𝑡) ≥ 0. 

Positivity of 𝐴(𝑡): The model equation (3) given by 𝑑𝐴 𝑑𝑡⁄ = (1 − 𝑝)𝜂𝐸 − (𝜑 + 𝛾 + 𝜇)𝐴 

can be expressed without loss of generality, after eliminating the positive term [(1 −
𝑝)𝜂𝐸]  which are appearing on the right-hand side, as an inequality as 𝑑𝐴 𝑑𝑡⁄ ≥
[−(𝜑 + 𝛾 + 𝜇)]𝐴. Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as   𝐴(𝑡) ≥
𝐴0[𝑒𝑥𝑝 − (𝜑 + 𝛾 + 𝜇)𝑡]. Recall that an exponential function is always non–negative 

irrespective of the sign of the exponent, i.e., the exponential function [𝑒𝑥𝑝 −
(𝜑 + 𝛾 + 𝜇)𝑡] is a non-negative quantity. Hence, it can be concluded that  𝐴(𝑡) ≥ 0. 

Positivity of  𝐼(𝑡): The model equation (4) given by 𝑑𝐼 𝑑𝑡 =⁄ 𝑝𝜂𝐸 − (𝜙 + 𝛼 + 𝜇)𝐼 can be 

expressed without loss of generality, after eliminating the positive term [𝑝𝜂𝐸]which are 

appearing on the right-hand side, as an inequality as 𝑑𝐼 𝑑𝑡⁄ ≥ −[(𝜙 + 𝛼 + 𝜇)]𝐼. Using 

variables separable method and on applying integration, the solution of the foregoing 

differentially inequality can be obtained as  𝐼 (𝑡) ≥ 𝐼0[𝑒𝑥𝑝 − (𝜙 + 𝛼 + 𝜇)𝑡]. Recall that 

an exponential function is always non–negative irrespective of the sign of the exponent, 

i.e., the exponential function [𝑒𝑥𝑝 − (𝜙 + 𝛼 + 𝜇)] is a non-negative quantity. Hence, it 

can be concluded that  𝐼(𝑡) ≥ 0. 

Positivity of  𝐻(𝑡): The model equation (5) given by 𝑑𝐻 𝑑𝑡 = 𝜑𝐴 + 𝜙𝐼 − (𝛿 + 𝜇 + 𝜉)𝐻⁄  

can be expressed without loss of generality, after eliminating the positive term  [𝜑𝐴 +
𝜙𝐼] which are appearing on the right-hand side, as an inequality as 𝑑𝐻 𝑑𝑡⁄ ≥
[−(𝛿 + 𝜇 + 𝜉)]𝐻 . Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as   𝐻(𝑡) ≥
𝐻0[𝑒𝑥𝑝 − (𝛿 + 𝜇 + 𝜉)𝑡] . Recall that an exponential function is always non–negative 

irrespective of the sign of the exponent, i.e., the exponential function   [𝑒𝑥𝑝 −
(𝛿 + 𝜇 + 𝜉)𝑡].  is a non-negative quantity. Hence, it can be concluded that  𝐻(𝑡) ≥ 0. 

Positivity of  𝑅(𝑡): The model equation (5) given by 𝑑𝑅 𝑑𝑡⁄ = 𝛾𝐴 + 𝛼𝐼 + 𝛿𝐻 − (𝜔 +
𝜇)𝑅  can be expressed without loss of generality, after eliminating the positive term 

 [𝛾𝐴 + 𝛼𝐼 + 𝛿𝐻]  which are appearing on the right-hand side, as an inequality as 𝑑𝑅 𝑑𝑡⁄ ≥
[−(𝜔 + 𝜇)]𝑅. Using variables separable method and on applying integration, the solution 

of the foregoing differentially inequality can be obtained as  𝑅(𝑡) ≥ 𝑅0[𝑒𝑥𝑝 − (𝜔 + 𝜇)𝑡]. 
Recall that an exponential function is always non–negative irrespective of the sign of the 

exponent, i.e., the exponential function [−(𝜔 + 𝜇)𝑡].  is a non-negative quantity. Hence, 

it can be concluded that  𝑅(𝑡) ≥ 0. 

Thus, the model variables 𝑆(𝑡), 𝐸(𝑡),   𝐴(𝑡), 𝐼(𝑡), 𝐻(𝑡) and 𝑅(𝑡)  representing 

population sizes of various types of cells are positive quantities and will remain in ℝ+
6 for 

all  𝑡. 

3.4 The disease free equilibrium (DFE) 

In order to understand the transmission dynamics of the model, it is necessary to determine 

equilibrium points of the solution region. An equilibrium solution is a steady state solution 

of the model equations (1)-(6) in the sense that if the system begins at such a state, it will 

remain there for all times. In other words, the population sizes remain unchanged and thus 

the rate of change for each population vanishes [3]. 

To find the disease free equilibrium, we equated the right hand sides of model 
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equations (1)-(6) to zero, evaluating it at 𝐸 = 𝐼 = 𝐴 = 𝐻 = 0  and solving for the 

symptomatic and non-asymptomatic variables. These requirements reflect in reducing the 

model equations (1)-(6) as     Π − (λ + μ)S = 0 giving  S0 = Π (λ + μ)⁄ = (Π μ⁄ ) where 

 λ = β(I + qA) N⁄ = β(0 + 0) N⁄ = 0. Thus, the disease-free equilibrium point of the 

model equation in (1)-(6) above is given by: 

휀0 = {𝑆0, 𝐸0, 𝐴0, 𝐼0, 𝐻0, 𝑅0} = {(Π μ⁄ ),   0, 0, 0, 0,0}. 

3.5 The basic reproduction number (𝕽𝟎) 

The basic reproduction number denoted by ℜ0 and is defined as the expected number of 

people getting secondary infection among the whole susceptible population. This number 

determines the potential for the spread of disease within a population. When ℜ0 < 1 each 

infected individual produces on average less than one new infected individual so that the 

disease is expected to die out. On the other hand, if  ℜ0 > 1 then each individual produces 

more than one new infected individual so that the disease is expected to continue spreading 

in the population. This means that the threshold quantity for eradicating the disease is to 

reduce the value of  ℜ0 to less than one [5].   

The basic reproductive number ℜ0  can be determined using the next generation 

matrix. In this method, ℜ0 is defined as the largest eigenvalue of the next generation 

matrix. The formulation of this matrix involves classification of all compartments of the 

model in to two classes: infected and non-infected. That is, the basic reproduction number 

cannot be determined from the structure of the mathematical model alone but depends on 

the definition of infected and uninfected compartments. 

The model equations are rewritten starting with newly infective classes 

 𝑑𝐸 𝑑𝑡⁄ = 𝜆𝑆 − (𝜂 + 𝜇)𝐸 

(9) 
 𝑑𝐴 𝑑𝑡⁄ = (1 − 𝑝)𝜂𝐸 − (𝜑 + 𝛾 + 𝜇)𝐴 

 𝑑𝐼 𝑑𝑡⁄ = 𝑝𝜂𝐸 − (𝜙 + 𝛼 + 𝜇)𝐼 

 𝑑𝐻 𝑑𝑡⁄ = 𝜑𝐴 + 𝜙𝐼 − (𝛿 + 𝜇 + 𝜉)𝐻 

Then by the principle of next-generation matrix, we obtained 

𝑓𝑖 = [

𝛽(𝐼 + 𝑞𝐴)𝑆 𝑁⁄

0
0
0

] and 𝑣𝑖 =

[
 
 
 

(𝜂 + 𝜇)𝐸

−(1 − 𝑝)𝜂𝐸 + (𝜑 + 𝛾 + 𝜇)𝐴
−𝑝𝜂𝐸 + (𝜙 + 𝛼 + 𝜇)𝐼

−𝜑𝐴 − 𝜙𝐼 + (𝛿 + 𝜇 + 𝜉)𝐻 ]
 
 
 
 

The Jacobian matrices of 𝑓𝑖 and 𝑣𝑖 evaluated at DFE are given by 𝐹 and 𝑉, respectively, 

such that 

𝐹 = [

0 𝛽𝑞 𝛽 0
0 0 0 0
0 0 0 0
0 0 0 0

]   and 𝑉 = [

𝑎 0 0 0
−(1 − 𝑝)𝜂 𝑏 0 0

−𝑝𝜂 0 𝑐 0
0 −𝜑 −𝜙 𝑑

] 

It can be verified that the matrix 𝑉 is non-singular as its determinant 𝑑𝑒𝑡[𝑉] = 𝑎𝑏𝑐𝑑 is 

non-zero and after some algebraic computations its inverse matrix is constructed as 

𝑉−1 =

[
 
 
 

[1 𝑎⁄ ] 0 0 0
[(1 − 𝑝)𝜂 𝑎𝑏⁄ ] [1 𝑏⁄ ] 0 0

[𝑝𝜂 𝑎𝑐⁄ ] 0 [1 𝑐⁄ ] 0
[−(𝜙𝑏𝑝𝜂 + 𝑐𝜑(1 − 𝑝)𝜂) 𝑎𝑏𝑐𝑑⁄ ] [𝜑 𝑏𝑑⁄ ] [𝜙 𝑐𝑑⁄ ] [1 𝑑⁄ ]]

 
 
 

. 

The product of the matrices 𝐹 and 𝑉−1 can be computed as 
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𝐹𝑉−1 = [

0 𝛽𝑞 𝛽 0
0 0 0 0
0 0 0 0
0 0 0 0

] 

[
 
 
 

[1 𝑎⁄ ] 0 0 0
[(1 − 𝑝)𝜂 𝑎𝑏⁄ ] [1 𝑏⁄ ] 0 0

[𝑝𝜂 𝑎𝑐⁄ ] 0 [1 𝑐⁄ ] 0
[−(𝜙𝑏𝑝𝜂 + 𝑐𝜑(1 − 𝑝)𝜂) 𝑎𝑏𝑐𝑑⁄ ] [𝜑 𝑏𝑑⁄ ] [𝜙 𝑐𝑑⁄ ] [1 𝑑⁄ ]]

 
 
 

= [

[(𝜂𝛽𝑞𝑐(1 − 𝑝) + 𝛽𝑝𝜂𝑏) 𝑎𝑏𝑐⁄ ] [𝛽𝑞 𝑏⁄ ] [𝛽 𝑐⁄ ] 0
0 0 0 0
0 0 0 0
0 0 0 0

]. 

Now it is possible to calculate the eigenvalue to determine the basic reproduction number 

ℜ0 by taking the spectral radius of the matrix  𝐹𝑉−1. Thus, the eigenvalues are computed 

by evaluating 𝑑𝑒𝑡[𝐹𝑉−1 − 𝜓𝐼] = 0 or equivalently solving 

|

[(𝜂𝛽𝑞𝑐(1 − 𝑝) + 𝛽𝑝𝜂𝑏) 𝑎𝑏𝑐⁄ ] − 𝜓 [𝛽𝑞 𝑏⁄ ] [𝛽 𝑐⁄ ] 0
0 −𝜓 0 0
0 0 −𝜓 0
0 0 0 −𝜓

| = 0. 

It reduces to the equation for 𝜓 as −𝜓3[[(𝜂𝛽𝑞𝑐(1 − 𝑝) + 𝛽𝑝𝜂𝑏) 𝑎𝑏𝑐⁄ ] − 𝜓] = 0 giving 

the two eigenvalues as 𝜓1 = [(𝜂𝛽𝑞𝑐(1 − 𝑝) + 𝛽𝑝𝜂𝑏) 𝑎𝑏𝑐⁄ ] , 𝜓2 = 𝜓3 = 𝜓4 = 0. 

However, the dominant eigenvalue here is 𝜓1 = [(𝜂𝛽𝑞𝑐(1 − 𝑝) + 𝛽𝑝𝜂𝑏) 𝑎𝑏𝑐⁄ ] and 

is the spectral radius as the threshold value or the basic reproductive number. Thus, it can 

be concluded that the reproduction number of the model is ℜ0 =
[𝛽𝜂[𝑞𝑐(1 − 𝑝) + 𝑝𝑏] 𝑎𝑏𝑐⁄ ] , where 𝑎 = (𝜂 + 𝜇), 𝑏 = (𝜑 + 𝛾 + 𝜇), 𝑐 = (𝜙 + 𝛼 + 𝜇),
𝑑 = (𝛿 + 𝜇), 𝑒 = (𝜔 + 𝜇). 

3.6 Local stability of disease free equilibrium 

Theorem 3.1 The disease free equilibrium point 휀0  of the system (1)-(6) is locally 

asymptotically stable if  ℜ0 < 1 and unstable if  ℜ0 > 1. 

Proof To proof this theorem first we obtain the Jacobian matrix of system (9) at the disease 

free equilibrium 휀0 as follows: 

𝐽(휀0) =

[
 
 
 
 
 
−𝜇 0 𝛽𝑞 𝛽 0 𝜔
0 −𝑎 𝛽𝑞 𝛽 0 0

0 (1 − 𝑝)𝜂 −𝑏 0 0 0
0 𝑝𝜂 0 −𝑐 0 0
0 0 𝜑 𝜙 −𝑑 0
0 0 𝛾 𝛼 𝛿 −𝑒]

 
 
 
 
 

= 0. 

Now, the eigenvalues of 𝐽(휀0) are required to be found. The characteristic equation 

𝑑𝑒𝑡[𝐽(휀0) − 𝜓𝐼] = 0 is expanded and simplified as follows: 

|

|

−𝜇 − 𝜓 0 𝛽𝑞 𝛽 0 𝜔
0 −𝑎 − 𝜓 𝛽𝑞 𝛽 0 0

0 (1 − 𝑝)𝜂 −𝑏 − 𝜓 0 0 0
0 𝑝𝜂 0 −𝑐 − 𝜓 0 0
0 0 𝜑 𝜙 −𝑑 − 𝜓 0
0 0 𝛾 𝛼 𝛿 −𝑒 − 𝜓

|

|
= 0 (10) 

From the characteristic equation of (10), we obtained a characteristic polynomial:   
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[−𝜇 − 𝜓][−𝑒 − 𝜓][−𝑑 − 𝜓][𝜓3 + 𝐿1𝜓
2 + 𝐿2𝜓 + 𝐿3] = 0, (11) 

where 

𝐿1 = 𝑎 + 𝑏 + 𝑐 

𝐿2 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 − 𝛽𝜂(𝑝 + 𝑞) 

𝐿3 = 𝑎𝑏𝑐(1 − ℜ0) 

Thus, from equation (11) clearly, we see that: 

𝜓1 = −𝜇 

𝜓2 = −𝑑 

𝜓3 = −𝑒 

It can be observed that the eigenvalues 𝜓1, 𝜓2 and 𝜓3 are absolutely negative quantities.  

For the last expression, that is, 

𝜓3 + 𝐿1𝜓
2 + 𝐿2𝜓 + 𝐿3 = 0 (12) 

We applied Routh-Hurwitz criteria. By the principle of Routh-Hurwitz criteria, (12) has 

strictly negative real root if and only if   𝐿1 > 0, 𝐿3 > 0  and  𝐿1𝐿2 > 𝐿3. 

Therefore, it is concluded that the DFE 휀0 of the system of differential equations 

(1)-(6) is locally asymptotically stable if ℜ0 < 1 and unstable if  ℜ0 > 1. 

3.7 Global stability of disease free equilibrium 

To investigate the global stability of disease free equilibrium we used technique 

implemented by Castillo-Chavez and Song [2]. First the model equation (1)-(6) can be 

re-written as 

𝑑𝑋 𝑑𝑡⁄ = 𝐹(𝑋, 𝑍) 

𝑑𝑍 𝑑𝑡⁄ = 𝐺(𝑋, 𝑍), 𝐺(𝑋, 0) = 0 

Where, 𝑋 stands for the uninfected population, that is 𝑋 = (𝑆, 𝑅) and 𝑍  also stands for 

the infected population, that is  𝑍 = (𝐸, 𝐴, 𝐼, 𝐻). The disease free equilibrium point of 

the model is denoted by 𝑈 = (𝑋∗, 0) . The point 𝑈 = (𝑋∗, 0)  to be globally 

asymptotically stable equilibrium for the model provided that ℜ0 < 1 and the following 

conditions must be met: 

(𝐻1).  For 𝑑𝑋 𝑑𝑡⁄ = 𝐹(𝑋, 0),   𝑋∗  is globally asymptotically stable. 

(𝐻2).  𝐺(𝑋, 𝑍) = 𝐴𝑍 − �̃�(𝑋, 𝑍),    �̃�(𝑋, 𝑍) ≥ 0   for  (𝑋, 𝑍) ∈ Ω. 

Where 𝐴 = 𝐷𝑍𝐺(𝑈, 0)  is a Metzler matrix (the off diagonal elements of 𝐴  are 

non-negative) and 𝐺 is the region where the model makes biological sense. 

If the model (1)-(6) met the above two criteria, then the following theorem holds. 

Theorem 3.2 The point   𝑈 = (𝑋∗, 0)  is globally asymptotically stable equilibrium 

provided that ℜ0 < 1 and the condition (𝐻1) and (𝐻2) are satisfied. 

Proof From system (1)-(6) we can get 𝐹(𝑋, 𝑍) and  𝐺(𝑋, 𝑍); 

(𝑋, 𝑍) = [
Π − 𝜆𝑆 − 𝜇𝑆 + 𝜔𝑅

𝛾𝐴 + 𝛼𝐼 + 𝛿𝐻 − (𝜔 + 𝜇)𝑅
]   and   𝐺(𝑋, 𝑍) = [

𝜆𝑆 − (𝜂 + 𝜇)𝐸
(1 − 𝑝)𝜂𝐸 − (𝜑 + 𝛾 + 𝜇)𝐴

𝑝𝜂𝐸 − (𝜙 + 𝛼 + 𝜇)𝐼
𝜑𝐴 + 𝜙𝐼 − (𝛿 + 𝜇)𝐻

]  
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Consider the reduced system 

𝑑𝑋

𝑑𝑡 |𝑍=0
= [

Π − 𝜇𝑆
0

] (13) 

From (13), it is obvious that 𝑋∗ = [(Π 𝜇⁄ ), 0] is the global asymptotic point. This can be 

verified from the solution, namely  𝑆 = [Π 𝜇⁄ ] + [𝑆(0) − (Π 𝜇⁄ )]𝑒−𝜇𝑡 . As  𝑡 → ∞, the 

solution  (𝑆) → [Π 𝜇⁄ ], implying that the global convergence of (15) in  Ω. 

From the equation for infected compartments in the model we have: 

𝐴 = [

(𝜂 + 𝜇) 𝛽𝑞 𝛽 0
(1 − 𝑝)𝜂 −(𝜑 + 𝛾 + 𝜇) 0 0

𝑝𝜂 0 −(𝜙 + 𝛼 + 𝜇) 0
0 𝜑 𝜙 −(𝛿 + 𝜇)

] 

Since 𝐴 is Metzler matrix, i.e., all off diagonal elements are nonnegative. Then, 𝐺(𝑋, 𝑍) 

can be written as,  𝐺(𝑋, 𝑍) = 𝐴𝑍 − �̃�(𝑋, 𝑍), where 

�̃�(𝑋, 𝑍) = [

β(I + qA)(1 − [S N⁄ ])
0
0
0

] =

[
 
 
 
 
�̃�1(𝑋, 𝑍)

�̃�2(𝑋, 𝑍)

�̃�3(𝑋, 𝑍)

�̃�4(𝑋, 𝑍)]
 
 
 
 

 

It follows that �̃�1(𝑋, 𝑍) ≥ 0, �̃�2(𝑋, 𝑍) = �̃�3(𝑋, 𝑍) = �̃�4(𝑋, 𝑍) = 0. Thus,  �̃�(𝑋, 𝑍) ≥ 0. 

Conditions (𝐻1)  and (𝐻2)  are satisfied and we conclude that   𝑈  is globally 

asymptotically stable for  ℜ0 < 1. 

3.8 Stability analysis of endemic equilibrium 

Existence: We find an equilibrium where at least 𝐴∗ or 𝐸∗ or 𝐼∗ or 𝐻∗ is non zero. Let 

the endemic equilibrium point of the model equation (1)-(6) be denoted by: 

휀∗ = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐻∗, 𝑅∗), 

and consider the force of infection 

𝜆∗ = [𝛽(𝐼∗ + 𝑞𝐴∗)] [𝑁∗]⁄  (14) 

Solving the equations in system (1)-(6) interms of the force of infection by setting the 

right-hand sides of equations in (1)-(6) to zero, gives: 

𝑆∗ = [𝑎𝑏𝑐𝑑𝑒Π] [𝑎𝑏𝑐𝑑𝑒(𝜆∗ + 𝜇) + 𝜆∗𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]⁄  

(15) 

𝐸∗ = [𝑏𝑐𝑑𝑒Πλ∗] [𝑎𝑏𝑐𝑑𝑒(𝜆∗ + 𝜇) + 𝜆∗𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]⁄  

𝐴∗ = [𝑐𝑑𝑒Πηλ∗(1 − 𝑝)] [𝑎𝑏𝑐𝑑𝑒(𝜆∗ + 𝜇) + 𝜆∗𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]⁄  

𝐼∗ = [𝑏𝑑𝑒𝑝Πηλ∗] [𝑎𝑏𝑐𝑑𝑒(𝜆∗ + 𝜇) + 𝜆∗𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]⁄  

𝐻∗ = [Πηλ∗[𝜑𝑐(1 − 𝑝) + 𝜙𝑏𝑝]] [𝑎𝑏𝑐𝑑𝑒(𝜆∗ + 𝜇) + 𝜆∗𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]⁄  

𝑅∗ = [Πηλ∗[dcγ(1 − 𝑝) + αbd𝑝 + 𝛿𝜑𝑐(1 − 𝑝) + δϕb𝑝]]

/[𝑎𝑏𝑐𝑑𝑒(𝜆∗ + 𝜇) + 𝜆∗𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]] 

Substituting (15) and in equation (14) gives  

𝜆∗ = [deβμηλ∗[b𝑝 + qc(1 − 𝑝)]] [𝑎𝑏𝑐𝑑𝑒𝜇 + 𝑎𝑏𝑐𝑑𝑒𝜆∗ + 𝜆∗𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]⁄  (16) 

After some rearrangement equation (16) becomes 

[𝑎𝑏𝑐𝑑𝑒 + 𝜂𝜔𝑐𝑓(1 − 𝑝) − 𝜂𝜔𝑔𝑏𝑑]𝜆∗ + 𝑎𝑏𝑐𝑑𝑒𝜇[1 − ℜ0] = 0 
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This shows that the non-zero (positive endemic) equilibrium point of the model satisfy 

𝐷1𝜆
∗ + 𝐷2 = 0, (17) 

where, 𝐷1 = 𝑎𝑏𝑐𝑑𝑒 + 𝜂𝜔𝑐𝑓(1 − 𝑝) − 𝜂𝜔𝑔𝑏𝑑 and 𝐷2 = 𝑎𝑏𝑐𝑑𝑒𝜇[1 − ℜ0]. 
It is clear that 𝐷1 > 0 and  𝐷2 < 0 when ℜ0 > 1. Thus, the linear system (17) has a 

unique positive solution, given by 𝜆∗ = −𝐷2 𝐷1⁄  whenever ℜ0 > 1. On the other hand, 

when ℜ0 < 1,   𝐷2 > 0. In this case, the force of infection at steady state is negative. 

Hence the model has no positive equilibrium point in this case. 

Lemma 3.4 The model equation (1)-(6) has a unique positive endemic equilibrium 

whenever ℜ0 > 1 and no positive endemic equilibrium whenever ℜ0 < 1. 

The local stability property of this endemic equilibrium is now explored. 

Theorem 3.3 The unique endemic equilibrium of model equation (1)-(6) is locally 

asymptotically stable if ℜ0 > 1. 

Proof  The proof is based on transforming the problem of analysing the stability of an 

equilibrium point to that of analysing the stability of a fixed point. Equation (16) gives a 

fixed point problem of the form: 

𝑓(𝜆∗) = [deβμηλ∗[b𝑝 + qc(1 − 𝑝)]] [𝑎𝑏𝑐𝑑𝑒𝜇 + [𝑎𝑏𝑐𝑑𝑒 + 𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]𝜆∗]⁄  

It follows that 

𝑓(𝜆∗) = [deμλ∗[abcℜ0]] [𝑎𝑏𝑐𝑑𝑒𝜇 + [𝑎𝑏𝑐𝑑𝑒 + 𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]𝜆∗]⁄  

Then, derivative of 𝑓(𝜆∗) become: 

𝑓′(𝜆∗) = [(abcdeμ)2ℜ0] [[𝑎𝑏𝑐𝑑𝑒𝜇 + [𝑎𝑏𝑐𝑑𝑒 + 𝜂𝜔[𝑐𝑓(1 − 𝑝) − 𝑔𝑏𝑝]]𝜆∗]2]⁄  

Evaluating   𝑓′(𝜆∗) at   𝜆∗ = −𝐷2 𝐷1⁄  gives: 

𝑓′(−𝐷2 𝐷1⁄ ) = [(abcdeμ)2ℜ0] [(abcdeμℜ0)
2]⁄ =

1

ℜ0
. 

It is clear that 

|𝑓′(𝜆∗) | < 1 at   𝜆∗ = −𝐷2 𝐷1⁄  , whenever ℜ0 > 1. 

Thus, the unique endemic equilibrium is locally asymptotically stable if ℜ0 > 1.  

Theorem 3.4 The endemic equilibrium point of the model equation (1)-(6) is globally 

asymptotically stable whenever  ℜ0 > 1. 

Proof  To prove the global asymptotic stability of the endemic equilibrium we use the 

method of Lyapunov functions. Define 

(𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐻∗, 𝑅∗) = [𝑀 − 𝑀∗ − 𝑀∗𝑙𝑛(𝑀∗ 𝑀⁄ )] + [𝑆 − 𝑆∗ − 𝑆∗𝑙𝑛(𝑆∗ 𝑆⁄ )] 

                               +[𝐼 − 𝐼∗ − 𝐼∗𝑙𝑛(𝐼∗ 𝐼⁄ )] + [𝐴 − 𝐴∗ − 𝐴∗𝑙𝑛(𝐴∗ 𝐴⁄ )] 

                               +[𝐻 − 𝐻∗ − 𝐻∗𝑙𝑛(𝐻∗ 𝐻⁄ )] + [𝑅 − 𝑅∗ − 𝑅∗𝑙𝑛(𝑅)] 

By direct calculating the derivative of 𝐹 along the solution (1)-(6) we have 

𝑑𝐹 𝑑𝑡⁄ = [(𝑆 − 𝑆∗) 𝑆⁄ ] 𝑑𝑆 𝑑𝑡⁄ + [(𝐸 − 𝐸∗) 𝐸⁄ ] 𝑑𝐸 𝑑𝑡⁄ + [(𝐴 − 𝐴∗) 𝐴⁄ ] 𝑑𝐴 𝑑𝑡⁄

+ [(𝐼 − 𝐼∗) 𝐼⁄ ] 𝑑𝐼 𝑑𝑡⁄ + [(𝐻 − 𝐻∗) 𝐻⁄ ] 𝑑𝐻 𝑑𝑡⁄ + [(𝑅 − 𝑅∗) 𝑅⁄ ] 𝑑𝑅 𝑑𝑡⁄  
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= [(𝑆 − 𝑆∗) 𝑆⁄ ][Π − 𝜆𝑆 − 𝜇𝑆 + 𝜔𝑅] + [(𝐸 − 𝐸∗) 𝐸⁄ ][𝜆𝑆 − (𝜂 + 𝜇)𝐸]

+ [(𝐴 − 𝐴∗) 𝐴⁄ ][(1 − 𝑝)𝜂𝐸 − (𝜑 + 𝛾 + 𝜇)𝐴]

+ [(𝐼 − 𝐼∗) 𝐼⁄ ][𝑝𝜂𝐸 − (𝜙 + 𝛼 + 𝜇)𝐼 ]

+ [(𝐻 − 𝐻∗) 𝐻⁄ ][𝜑𝐴 + 𝜙𝐼 − (𝛿 + 𝜇 + 𝜉)𝐻] + [(𝑅 − 𝑅∗) 𝑅⁄ ][𝛾𝐴 + 𝛼𝐼

+ 𝛿𝐻 − (𝜔 + 𝜇)𝑅 

= [1 − 𝑆∗ 𝑆⁄ ][Π − 𝜆𝑆 − 𝜇𝑆 + 𝜔𝑅] + [1 − 𝐸∗ 𝐸⁄ ][𝜆𝑆 − (𝜂 + 𝜇)𝐸]

+ [1 − 𝐴∗ 𝐴⁄ ][(1 − 𝑝)𝜂𝐸 − (𝜑 + 𝛾 + 𝜇)𝐴 ]

+ [1 − 𝐼∗ 𝐼⁄ ][𝑝𝜂𝐸 − (𝜙 + 𝛼 + 𝜇)𝐼]

+ [1 − 𝐻∗ 𝐻⁄ ][𝜑𝐴 + 𝜙𝐼 − (𝛿 + 𝜇 + 𝜉)𝐻] + [1 − 𝑅∗ 𝑅⁄ ][𝛾𝐴 + 𝛼𝐼

+ 𝛿𝐻 − (𝜔 + 𝜇)𝑅] 

𝑑𝐹 𝑑𝑡⁄ = [Π + 𝜆𝑆∗ + 𝜂𝐸∗ + (𝜑 + 𝛾)𝐴∗ + (𝜙 + 𝛼)𝐼∗ + 𝛿𝐻∗ + 𝜔𝑅∗ + (𝑁∗ − 𝑁)𝜇] 

                 −[(Π + 𝜔𝑅) [𝑆∗ 𝑆]⁄ + 𝜆𝑆[𝐸∗ 𝐸⁄ ] + (1 − 𝑝)𝜂𝐸[𝐴∗ 𝐴⁄ ] + 𝑝𝜂𝐸[𝐼∗ 𝐼]⁄ + (𝜑𝐴

+ 𝜙𝐼 + 𝛾𝐴 + 𝛼𝐼 + 𝛿𝐻)[𝑅∗ 𝑅⁄ ]] 

Thus, collecting positive and negative terms together we obtain 

𝑑𝐹 𝑑𝑡⁄ = 𝑄 − 𝐾. 

Here, 

𝑄 = Π + 𝜆𝑆∗ + 𝜂𝐸∗ + (𝜑 + 𝛾)𝐴∗ + (𝜙 + 𝛼)𝐼∗ + 𝛿𝐻∗ + 𝜔𝑅∗ + (𝑁∗ − 𝑁)𝜇, 

𝐾 = [(Π + 𝜔𝑅) [𝑆∗ 𝑆]⁄ + 𝜆𝑆[𝐸∗ 𝐸⁄ ] + (1 − 𝑝)𝜂𝐸[𝐴∗ 𝐴⁄ ] + 𝑝𝜂𝐸[𝐼∗ 𝐼]⁄  

       +(𝜑𝐴 + 𝜙𝐼 + 𝛾𝐴 + 𝛼𝐼 + 𝛿𝐻)[𝑅∗ 𝑅⁄ ]] 

𝑁 = 𝑆 + 𝐸 + 𝐴 + 𝐼 + 𝐻 + 𝑅  and  𝑁∗ = 𝑆∗ + 𝐸∗ + 𝐴∗ + 𝐼∗ + 𝐻∗ + 𝑅∗ 

Thus if 𝑄 < 𝐾, then 𝑑𝐹 𝑑𝑡⁄  ≤ 0. Noting that 𝑑𝐹 𝑑𝑡⁄ = 0 if and only if 𝑆 = 𝑆∗, 𝐸 = 𝐸∗,
𝐴 = 𝐴∗, 𝐼 = 𝐼∗, 𝐻 = 𝐻∗, 𝑅 = 𝑅∗.  Therefore, the largest compact invariant set in 

{(𝑆∗,  𝐸∗, 𝐴∗, 𝐼∗, 𝐻∗, 𝑅∗) ∈ Ω:  𝑑𝐹 𝑑𝑡⁄ = 0}  is the singleton 휀∗  is the endemic 

equilibrium of the system (1)-(6). By LaSalle’s invariant principle (LaSalle’s, 1976), it 

implies that 휀∗ is globally asymptotically stable in Ω if 𝑄 < 𝐾. 

4. Sensitivity analysis 

In this section we perform the sensitivity analysis of the basic reproduction number. 

Sensitivity analysis tells us how important each parameter is to disease transmission. Such 

information is crucial not only for experimental design, but also to data assimilation and 

reduction of complex nonlinear models. Sensitivity analysis is commonly used to 

determine the robustness of model predictions to parameter values, since there are usually 

errors in data collection and presumed parameter values. It is used to discover parameters 

that have a high impact on   ℜ0  and should be targeted by intervention strategies. 

Following Eshetu and Koya [6], we present the normalized forward sensitivity indices of 

ℜ0  with respect to model parameter values 𝜇 = 0.02, 𝛽 = 0.68, 𝜙 = 0.004, 𝜑 =
0.003, 𝛾 = 0.58, 𝛼 = 0.89,   𝜂 = 0.006, 𝑞 = 0.04, 𝑝 = 0.48. The explicit expression 

of  ℜ0 is given by 

ℜ0 = 𝛽𝜂[𝑞(1 − 𝑝)(𝜙 + 𝛼 + 𝜇) + 𝑝(𝜑 + 𝛾 + 𝜇)] [(𝜂 + 𝜇)(𝜑 + 𝛾 + 𝜇)(𝜙 + 𝛼 + 𝜇)]⁄ . 

Since ℜ0 depends only on nine parameters, we derive an analytical expression for its 

sensitivity to each parameter using the normalized forward sensitivity index as follows in 

Table 4 [4]. The sensitivity indices of the basic reproduction number with respect to main 

parameters are arranged orderly in Table 4. The parameters are arranged from the most 
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sensitive one to the least sensitive one. Those parameters that have positive indices i.e., 𝜑,
𝛽, 𝑝, 𝜂, 𝛾, 𝑞 and 𝜙 show that they have great impact on expanding the disease in the 

community if their values are increasing. Due to the reason that the basic reproduction 

number increases as their values increase, it means that the average number of secondary 

cases of infection increases in the community. Furthermore, those parameters in which 

their sensitivity indices are negative i.e., 𝛼 and 𝜇 have an influence of minimizing the 

burden of the disease in the community as their values increase while the others are left 

constant. And also, as their values increase, the basic reproduction number decreases, 

which leads to minimizing then endemicity of the disease in the community. 

Table 4. Sensitivity index and indices table. 

5. Numerical simulation 

In this section, numerical simulation study of model equations (1)-(6) is carried out using 

the software DE Discover 2.6.4 and MATLAB R2015b with ODE45 solver. To conduct 

the study, a set of physically meaningful values are assigned to the model parameters. 

These values are either taken from literature or assumed on the basis of reality. Using the 

parameter values given in Table 5 and the initial conditions 𝑆(0) = 300, 𝐸(0) = 50,
𝐴(0) = 120, 𝐴(0) = 100, 𝐻(0) = 90 and 𝑅(0) = 140 in the model equations (1)-(6) 

a simulation study is conducted and the results are given in the following Figures. 

Table 5. Parameter values used in model equations. 

Parameter Value Source 

𝚷 0.0015 [6] 

𝝁 0.002 [6] 

𝜷 0.68 Assumed 

𝝓 0.004 Assumed 

𝝋 0.003 Assumed 

𝜸 0.058 Assumed 

𝜶 0.089 Assumed 

𝝎 0.09 Assumed 

𝝃 0.001 [6] 

𝜼 0.006 Assumed 

𝒒 0.004 Assumed 

𝜹 0.078 Assumed 

𝒑 0.048 Assumed 

Parameter Symbol Sensitivity index Sensitivity indices 

𝜑 Υ𝜑
 ℜ0 = [𝜕 ℜ0 𝜑⁄ ] × [𝜑  ℜ0⁄ ] 1.13926 

𝛽 Υ𝛽
 ℜ0 = [𝜕 ℜ0 𝛽⁄ ] × [𝛽  ℜ0⁄ ] 11 

𝑝 Υ𝑝
 ℜ0 = [𝜕 ℜ0 𝑝⁄ ] × [𝑝  ℜ0⁄ ] 0.93836 

𝜂 Υ𝜂
 ℜ0 = [𝜕 ℜ0 𝜂⁄ ] × [𝜂  ℜ0⁄ ] 0.769232 

𝛾 Υ𝛾
 ℜ0 = [𝜕 ℜ0 𝛾⁄ ] × [𝛾  ℜ0⁄ ] 0.220 

𝑞 Υ𝑞
 ℜ0 = [𝜕 ℜ0 𝑞⁄ ] × [𝑞  ℜ0⁄ ] 0.01616 

𝜙 Υ𝜙
 ℜ0 = [𝜕 ℜ0 𝜙⁄ ] × [𝜙  ℜ0⁄ ] 0.0002697 

𝛼 Υ𝛼
 ℜ0 = [𝜕 ℜ0 𝛼⁄ ] × [𝛼  ℜ0⁄ ] -0.9137 

𝜇 Υ𝜇
 ℜ0 = [𝜕 ℜ0 𝜇⁄ ] × [𝜇  ℜ0⁄ ] -1.363231 
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Figure 2 illustrated that the susceptible individuals growing up to equilibrium level in 

the absence of HSV-II infection and decreases at a later time because of HSV-II infection 

but did not die out over time. 

 

Figure 2. Susceptible individuals. 

Figure 3 shows that the exposed individuals increase initially due to a smaller number 

of asymptomatic and symptomatic individuals and decreases at a later time due to more 

infectious individuals but did not die out over time.  

 

Figure 3. Exposed individuals. 

Figure 4 illustrated that the asymptomatic individual increases at the start as the result 

of a greater number of exposed individuals joined the asymptomatic class but decline 
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because of some asymptomatic individuals joined HSV-II class and due to recovery.  

 

Figure 4. Asymptomatic individuals. 

Figure 5 shows that the symptomatic individual decline for the reason that some 

symptomatic individuals joined HSV-II class and due to recovery. 

 

Figure 5. Symptomatic individuals. 

Figure 6 shows that the number of HSV-II individual decreases due to treatment and 

recovered individuals. 
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Figure 6. Herpes simplex virus-II individuals. 

Figure 7 illustrated that recovered individuals increases initially as the result of 

asymptomatic, symptomatic and HSV-II individuals are recovered and decreases due to 

natural death. 

 

Figure 7. Recovered individuals. 

The asymptomatic, symptomatic, HSV-II, and recovered individuals grows 

exponentially in which, after reaching equilibrium level, and died out over time as seen the 

results of the simulations in Figure 8. The results of simulation for the susceptible and 

exposed individuals shows that in the absence of the HSV-II infection, grows up to 

equilibrium level, achieved asymptotic stability and did not die out over time. 
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Figure 8. Total population of individuals. 

Figure 9 presents the graph of variation of treatment rate on human population infected 

with Herpes Simplex Virus – II against time. We see that as the treatment rates increases 

the number of HSV-II infections decreases. This implies that treatment reduces the viral 

load in the HSV-II individuals and minimizes the risk of HSV-II transmission from the 

community. 

 

Figure 9. Variation of HSV-II individuals for different values of treatment. 
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Figure 10. Figure showing ℜ0 with respect to symptomatic individuals. 

Figure 10 shows that the basic reproduction number with respect to symptomatic 

individuals. It is evident that stability to be achieved when ℜ0 < 1. 

 

Figure 11. Figure showing ℜ0 with respect to asymptomatic individuals. 

Figure 11 shows that the basic reproduction number with asymptomatic individuals. 

Clearly, the stability of disease free equilibrium is achievable when  ℜ0 < 1.  
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Figure 12. Figure showing ℜ0 with respect to HSV-II individuals. 

Figure 12 shows that the basic reproduction number with HSV-II. It is evident that the 

stability of disease free equilibrium is achievable when  ℜ0 < 1.   

 

Figure 13. Effect of varying the contact rate 𝛽 on  ℜ0. 

Figure 13 show that ℜ0 > ℜ1 > ℜ2 > ℜ4, indicating that contact rate has an effect on 

reducing the reproduction number. An increase in level of contact rate among individuals 

in a community has an effect on reducing the prevalence of the disease. 
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Figure14. Sensitivity testing of S, E, A, I, H, R. 
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Figure 14 illustrate that sensitivity testing of 𝑆, 𝐸, 𝐴, 𝐼, 𝐻, 𝑅 . This explain that 

susceptible individuals, exposed individuals and removed compartment are medium, i.e., 

which leads to minimizing the endemicity of the disease in the community. Furthermore, 

those variables 𝐼, 𝐻 and 𝐴 (in some interval) in which their status are maximum, i.e., 

which have an influence of minimizing the burden of the disease in the community.    

6. Discussions and conclusions 

In this study, a mathematical model on the Herpes Simplex Virus-II (HSV-II) governed by 

a system of ordinary differential equations is formulated. The qualitative analysis of the 

model shows that there exists a domain where the model is epidemiologically and 

mathematically well-posed. The equilibria points of the model are obtained and their local 

as well as global stability conditions are established. The stability analysis of the model 

was investigated using the threshold parameter that governs the disease transmission. It 

was established that the disease free equilibrium is locally stable if the basic reproduction 

number ℜ0 < 1 and unstable if the basic reproduction number  ℜ0 > 1. The endemic 

equilibrium, which exist only when ℜ0 > 1, is globally asymptotically stable. Sensitivity 

analysis of the reproduction number suggested that increasing the rate of contact has high 

impact on the transmission of the diseases. Furthermore, analysis of the reproduction 

number through simulation shows that the reproduction number can be reduced to very 

low levels by decreasing contact rate. Therefore, these findings conclude that using 

different treatment would be a very effective way for reducing the disease from 

community. 
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