تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,800,529 |
تعداد دریافت فایل اصل مقاله | 54,843,349 |
Skew Cyclic Codes Of Arbitrary Length Over $R=\frac{F_p[v]}{({v}^{{2}^{k}}-1)}$ | ||
Theory of Approximation and Applications | ||
مقاله 4، دوره 16، شماره 1، مرداد 2022، صفحه 21-32 اصل مقاله (854.7 K) | ||
نوع مقاله: Research Articles | ||
نویسنده | ||
Alireza Soleimani* | ||
Faculty of Mathematics, Tarbiat Modares University, tehran, iran | ||
چکیده | ||
In thise paper we study an special type of Cyclic Codes called skew Cyclic codes over the ring$R=\frac{F_p[v]}{({v}^{{2}^{k}}-1)}$ where is a prime number. This sets Of codes are the result of module (or ring) structure of the skew polynomial ring $R=[x,Q]$ where ${v}^{{2}^{k}}=1 $ and $Q$ is an Fp automorphism such that $Q(v)={v}^{{2}^{k}}-1$. We show that when n is even these codes are principal and if n is odd these code Look like a module and proof some properties. | ||
کلیدواژهها | ||
Skew cyclic code؛ Ring؛ Code over ring | ||
آمار تعداد مشاهده مقاله: 174 تعداد دریافت فایل اصل مقاله: 104 |