تعداد نشریات | 418 |
تعداد شمارهها | 10,004 |
تعداد مقالات | 83,629 |
تعداد مشاهده مقاله | 78,548,149 |
تعداد دریافت فایل اصل مقاله | 55,630,521 |
A study of defectless and vs-defectless extensions of valued fields | ||
Journal of Linear and Topological Algebra | ||
دوره 10، شماره 02، شهریور 2021، صفحه 131-143 اصل مقاله (177.68 K) | ||
نوع مقاله: Review paper | ||
نویسنده | ||
َA. Nikseresht* | ||
Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran | ||
چکیده | ||
The phenomenon of defectless extensions is a classical notion in the framework of valued fields and valued vector spaces in valuation theory. The aim of this paper is to study various results regarding this concept and its applications. | ||
کلیدواژهها | ||
Valued fields؛ defectless extensions؛ algebraic field extensions | ||
مراجع | ||
[1] K. Aghigh, S. K. Khanduja, On chains associated with elements algebraic over a Henselian valued field, Algebra Colloq. 12 (4) (2005), 607-616.
[2] K. Aghigh, S. K. Khanduja, On the main invariant of elements algebraic over a Henselian valued field, Proc. Edinb. Math. Soc. 45 (1) (2002), 219-227.
[3] K. Aghigh, A. Nikseresht, Characterizing distinguished pairs by using liftings of irreducible polynomials, Canad. Math. Bull. 58 (2) (2015), 225-232.
[4] K. Aghigh, A. Nikseresht, Constructing complete distinguished chains with given invariants, J. Algebra Appl. 14 (2015), 3:1550026.
[5] V. Alexandru, N. Popescu, A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation, J. Math. Kyoto Univ. 28 (4) (1988), 579-592.
[6] J. Ax, Zeros of polynomials over local fields-the Galois action, J. Algebra. 15 (1970), 417-428.
[7] W. Baur, Die Theorie der Paare reell abgeschlossener Körper, (German) [The theory of pairs of real-closed fields] Logic and algorithmic (Zurich, 1980), pp. 25–34, Monograph. Enseign. Math., 30, Univ. Geneve, Geneva, 1982.
[8] S. Bhatia, S. K. Khanduja, On extensions generated by roots of lifting polynomials, Mathematika. 49 (2002), 107-118.
[9] A. Bishoni, S. K. Khanduja, On Eisenstein-Dumas and generalized Schönemann polynomials, Comm. Algebra. 38 (9) (2010), 3163-3173.
[10] A. Bishoni, S. Kumar, S. K. Khanduja, On liftings of powers of irreducible polynomials, J. Algebra Appl. 12 (2013), 5:1250222.
[11] R. Brown, Valuations, primes and irreducibility in polynomial rings and rational function fields, Trans. Amer. Math. Soc. 174 (1972), 451-488.
[12] R. Brown, Roots of irreducible polynomials in tame Henselian extension fields, Comm. Algebra. 37 (7) (2009), 2169-2183.
[13] R. Brown, J. L. Merzel, Invariants of defectless irreducible polynomials, J. Algebra Appl. 9 (4) (2010), 603-631.
[14] F. Delon, Extensions s'eparees et immediates de corps values. J. Symbolic Logic. 53 (2) (1988), 421-428.
[15] O. Endler, Valuation Theory, Springer-Verlag, New York-Heidelberg, Berlin, 1972.
[16] A. J. Engler, A. Prestel, Valued Fields, Springer-Verlag, Berlin, 2005.
[17] B. Green, M. Matignon, F. Pop, On valued function fields I, Manuscripta Math. 65 (3) (1989), 357-376.
[18] S. K. Khanduja, A note on a result of J. Ax, J. Algebra. 140 (1991), 360-361.
[19] S. K. Khanduja, R. Khassa, On invariants and strict systems of irreducible polynomials over Henselian valued fields, Comm. Algebra. 39 (2) (2011), 584-593.
[20] S. K. Khanduja, J. Saha, On a generalization of Eisenstein’s irreducibility criterion, Mathematika. 44 (1) (1997), 37-41.
[21] P. Kovacsics, F. V. Kuhlmann, A. Rzepka, On valuation independence and defectless extensions of valued fields, J. Algebra. 555 (2020), 69-95.
[22] F. V. Kuhlmann, Valuation Theory of Fields, Abelian Groups and Modules, Monograph in preparation, Preliminary versions of several chapters are available on the web site https://math.usask.ca/texttildelowfvk/Fvkbook.htm
[23] S. MacLane, A construction for absolute values on polynomial rings, Trans. Amer. Math. Soc. 40 (1936), 363-395.
[24] S. MacLane, A construction for prime ideals as absolute values of an algebraic field, Duke Math. J. 2 (1936), 492-510.
[25] S. MacLane, The Schönemann-Eisenstein irreducibility criteria in terms of prime ideals, Trans. Amer. Math. Soc. 43 (1938), 226-239.
[26] N. Moraes de Oliveira, E. Nart, Defectless polynomials over henselian fields and inductive valuations, J. Algebra. 541 (2020), 270-307.
[27] K. Ota, On saturated distinguished chains over a local field, J. Number Theory. 79 (1999), 217-248.
[28] N. Popescu, A. Zaharescu, On the main invariant of an element over a local field, Portugal. Math. 54 (1) (1997), 73-83.
[29] N. Popescu, A. Zaharescu, On the structure of the irreducible polynomials over local fields, J. Number Theory. 52 (1) (1995), 98-118.
[30] O. F. G. Schilling, The Theory of Valuations, Amer. Math. Soc. Math. Surveys No. 4. Providence: Amer. Math. Soc. 1950.
[31] A. Singh, S. K. Khanduja, On construction of saturated distinguished chains, Mathematika. 54 (1-2) (2007), 59-65.
[32] A. Singh, S. K. Khanduja, On finite tame extensions of valued fields, Comm. Algebra. 33 (2005), 1095-1105
[33] O. Zariski, P. Samuel, Commutative Algebra, Vol. II. Springer-Verlag, New York-Heidelberg, 1975. | ||
آمار تعداد مشاهده مقاله: 321 تعداد دریافت فایل اصل مقاله: 159 |